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Abstract. We prove that the information-theoretic upper bound on the min-

imax regret for zeroth-order adversarial bandit convex optimisation is at most

O(d2.5
√
n log(n)), where d is the dimension and n is the number of interactions.

This improves on O(d9.5
√
n log(n)7.5) by Bubeck et al. (2017). The proof is based

on identifying an improved exploratory distribution for convex functions.
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1 Introduction

Let K ⊂ Rd be a convex body (convex, compact with non-empty interior). At the

start of the game, an adversary secretly chooses a sequence (ft)
n
t=1 with ft ∈ G

and G is a subset of all convex functions from K to [0, 1]. Then, in each round t,

the learner chooses an action xt ∈ K, possibly with randomisation, and observes

only the loss ft(xt). The minimax regret over n rounds is

R∗n(G) = inf
policies

sup
(ft)nt=1∈Gn

max
x∈K

E

[
n∑
t=1

ft(xt)− ft(x)

]
, (1)

where the inf is over all policies of the learner that determine the actions (xt)
n
t=1.

The expectation integrates over the randomness of the actions (xt)
n
t=1. Our con-

tribution is a proof of the following theorem.

Theorem 1. Suppose that K contains a unit-radius Euclidean ball and G is the

set of all convex functions from K to [0, 1]. Then there exists a universal constant

c such that

R∗n(G) ≤ cd2.5
√
n log (n diam(K)) ,

where diam(K) = maxx,y∈K |x − y| is the diameter of K and | · | is the standard

Euclidean norm.

1



As in previous work, we make use of a simple reduction that allows us to restrict

slightly the class of functions available to the adversary [2, 4]. Define a constant

m = 1/((n + 1) diam(K)2) and let F be the space of all convex functions K to

[0, 1] that are

(a) n-Lipschitz: f(x)− f(y) ≤ n|x− y| for all x, y ∈ K; and

(b) m-strongly convex: for all x, y ∈ K and λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− 1

2
mλ(1− λ)|x− y|2 .

Proposition 16 in Section 5 shows that it suffices to prove Theorem 1 with F
rather than G. Briefly, the reduction works by showing that bounded convex

functions from K to [0, 1] cannot have large directional derivatives except close

to the boundary K and must have near-minimisers that are not too close to the

boundary. This means the learner can play on subset of K on which the loss

functions are n-Lipschitz without sacrificing much in terms of the regret. Strong

convexity is introduced by adding a small quadratic to all loss functions, which

has only a negligible impact because m is small.

The next (known) theorem serves as our starting point. It follows from the

machinery developed by Bubeck et al. [3], Bubeck and Eldan [2] and Russo and

Van Roy [13].

Theorem 2. Let α, β ∈ R be non-negative and for f ∈ F , let f? = minx∈K f(x).

Suppose that for any f̄ ∈ F and finitely supported distribution µ on F with the

discrete σ-algebra there exists a probability measure ρ on K such that∫
K
f̄(x) dρ(x)−

∫
F

f? dµ(f) ≤ α+

√
β

∫
F

∫
K

(f̄(x)− f(x))2 dρ(x) dµ(f) . (2)

Then there exists a universal constant c such that

R∗n(F ) ≤ nα+ c
√
βnd log (ndiam(K)) .

A hand-wavy intuition for Theorem 2 is as follows. Standard tools from mini-

max theory show that the inf and sup can be exchanged in Eq. (1), provided that

the adversary is allowed to randomise their choices. In other words, the adversary

does not lose power if at the start of the game they must announce to the learner

from which distribution the sequence of loss functions will be sampled. Based on

this, it suffices to bound the Bayesian regret for any prior. When f̄ =
∫

F f dµ(f),

the left-hand side of Eq. (2) is the instantaneous Bayesian regret for a learner

sampling x from ρ and when the posterior is µ. Meanwhile, the right-hand side

is the variance of the observation when sampling x from ρ and f from µ, which

can be upper bounded by an information gain. When this is large, the learner

gains information. Since there is only so much information, bounding the instan-

taneous regret in terms of the information gain leads to a bound on the cumulative
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regret [13]. Some subtlety is hidden, and curious readers should investigate the

original source [2, §4]. The distribution ρ in Theorem 2 is called an exploratory

distribution. Bubeck and Eldan [2] established the conditions of Theorem 2 with

α = O(1/n) and β = O(d21 polylog(n)). The next theorem improves on this result.

Theorem 3. For any f̄ ∈ F and distribution µ over F , there exists a probability

measure ρ on K such that Eq. (2) holds with α = 1/n and β = cd4 log(nd/m),

where c is a universal constant.

Briefly, the measure realising Theorem 3 is a mixture over probability measures

on the boundaries of level sets of f̄ . Combining Theorems 2 and 3 with the

reduction in Proposition 16 proves Theorem 1.

Related work Online convex optimisation is usually studied under the assump-

tion that the learner has access to the (sub-)gradient ∇ft(Xt), or even the whole

function ft. A number of perspectives on this vast literature can be found in re-

cent books and notes by Cesa-Bianchi and Lugosi [5], Hazan [8] and Orabona [12].

There is far less work when the learner only has access to point evaluations. A

natural idea is to use importance-weighting to estimate the gradients. At least

with current tools for estimating the gradient, however, the resulting bias/variance

tradeoff leads to suboptimal regret [11].

The function class F is omitted from the following regret bounds, to emphasise

that the assumptions vary in minor ways. Information-theoretic means were used

by Bubeck et al. [3] to show that the minimax regret is R∗n ≤ c log(n)
√
n when

d = 1 and c is a universal constant. The multi-dimensional problem was considered

by Hazan and Li [10], who showed that the minimax regret is O(n1/2 polylog(n)),

but with an exponential dependence on the dimension. Shortly after, Bubeck and

Eldan [2] generalised the information-theoretic machinery to prove that R∗n ≤
cd11 log(n)4

√
n, breaking the exponential dependence on the dimension while re-

taining square root dependence on the horizon. None of these works provide an

efficient algorithm. More recently, Bubeck et al. [4] used kernel-based estimators

and tools from online convex optimisation to show that R∗n ≤ cd9.5 log(n)7.5
√
n.

Furthermore, their algorithm can be implemented in polynomial time (with rea-

sonable assumptions) with the price that the dimension-dependence increases to

d10.5. They conjectured that the optimal regret is R∗n ≤ cd1.5
√
npolylog(n). The

best known lower bound is R∗n ≥ cd
√
n, which holds even when the function class

is restricted to linear functions [6]. There is also a line of work that exploits

strong convexity to obtain better bounds. In particular, if one is prepared to

make an additional assumption on smoothness, then Hazan and Levy [9] proved

that R∗n = O(d1.5
√

(n/m) log(n)). The polynomial dependence on m means that

enforcing strong convexity by adding a small quadratic to the losses blows up the

bound and leads to suboptimal rates.

The new results reduce the dependence on the dimension in the information-

theoretic upper bound, but in a way that does not lead naturally to an algorithm.
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A positive aspect of the approach is that the proof is geometric and makes use of

standard tools in asymptotic convex geometry.

Preliminaries The standard Euclidean norm is | · |. The d-dimensional sphere

is Sd = {x ∈ Rd+1 : |x| = 1}. The Minkowski sum of sets A and B is denoted

A+B. When x is a vector, A+ x = A+ {x}. Let volp denote the p-dimensional

Hausdorff measure on Rd, normalised to coincide with the Lebesgue measure.

Given x, y ∈ Rd, [x, y] = {tx + (1− t)y : t ∈ [0, 1]} is the chord connecting x and

y. The sets [x, y) and (x, y] and (x, y) are defined similarly but with appropriate

end-points removed. When x 6= 0, the hyperplane with normal x is x⊥ = {y ∈
Rd : 〈x, y〉 = 0} and Px(y) = arg minz∈x⊥ |y − z| is the Euclidean projection of

y onto x. For convex body K ⊂ Rd, the set Px(K) is called the shadow of K in

direction x. The infimum of a convex function f : K → R is f? = infx∈K f(x).

The boundary of K is ∂K.

Outline The proof of Theorem 1 has four main parts. The first provides a key

tool for combining exploratory distributions (Section 2). The next step develops

the main idea, which is that sampling from the level sets of f̄ is a good exploratory

distribution for large subsets of F . The proof of Theorem 3 is found here (Sec-

tion 3). In Section 4 we prove some technical lemmas, while the argument that

Theorems 2 and 3 imply Theorem 1 is given in Section 5.

Acknowledgements Many thanks to my colleagues András György and Marcus

Hutter for their useful suggestions.

2 Combining exploratory distributions

The plan is to establish the conditions of Theorem 2 for suitable values of α and

β, which means that for any f̄ ∈ F and distribution µ on F we need to find

a probability measure ρ on K satisfying Eq. (2). To make the problem more

manageable, we first prove that exploratory distributions can be combined.

Lemma 4. Let f̄ ∈ F and F = ∪ki=1Fi. Assume there exist probability measures

(ρi)
k
i=1 on K such that for all i ∈ {1, . . . , k},∫
K
f̄(x) dρi(x)− f? ≤ α+

√
β

∫
K

(f̄(x)− f(x))2 dρi(x) for all f ∈ Fi . (3)

Then there exists a probability measure ρ on K such that∫
K
f̄(x) dρ(x)−

∫
F

f? dµ(f) ≤ α+

√
βk

∫
F

∫
K

(
f̄(x)− f(x)

)2
dρ(x) dµ(f) .
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Proof. The argument is algebraically identical to that used by Russo and Van

Roy [14] to bound the information ratio for Thompson sampling. Assume without

loss of generality that (F )ki=1 are disjoint and µ(Fi) > 0 for all i ∈ {1, . . . , k}.
Let µi be the probability measure obtained by conditioning µ on Fi: µi(A) =

µ(A ∩Fi)/µ(Fi). Then, letting qi = µ(Fi) and ρ =
∑k
i=1 qiρi,∫

K
f̄(x) dρ(x)−

∫
F

f? dµ(f) =

k∑
i=1

qi

(∫
K
f̄(x) dρi(x)−

∫
F

f? dµi(f)

)

≤ α+

k∑
i=1

qi

√
β

∫
F

∫
K

(
f̄(x)− f(x)

)2
dρi(x) dµi(f)

≤ α+

√√√√βk

k∑
i=1

q2
i

∫
F

∫
K

(
f̄(x)− f(x)

)2
dρi(x) dµi(f)

≤ α+

√√√√βk

k∑
i,j=1

qiqj

∫
F

∫
K

(
f̄(x)− f(x)

)2
dρi(x) dµj(f)

= α+

√
βk

∫
F

∫
K

(
f̄(x)− f(x)

)2
dρ(x) dµ(f) ,

where the first inequality follows from the assumption in Eq. (3) and Jensen’s

inequality and the second follows from Cauchy-Schwarz.

3 Proof of Theorem 3

The first lemma shows that convex functions with different minimisers must differ

along suitably chosen rays. The situation is illustrated in Fig. 1.

Lemma 5. Let D ⊂ Rd be a convex body and f, g : D → R be convex functions

with f minimised at x? ∈ D and f? ≤ g?. Suppose that ε > 0 and x? /∈ K = {x ∈
D : g(x) ≤ g?+ε}. Assume that x, y ∈ ∂K and x = ψx?+(1−ψ)y with ψ ∈ (0, 1).

Then,

(f(x)− g(x))2 + (f(y)− g(y))2 ≥ 1

2
ψ2 (g? + ε− f?))2

.

Proof. Since x ∈ (x?, y), the definition of the level set means that g(x) = g? + ε.

Furthermore, g(y) ≤ g? + ε, with a strict inequality only possible if y is on the

boundary of D. Suppose that ψf? + (1− ψ)f(y) ≥ g? + ε. Then

(f(y)− g(y))2 ≥
(

ψ

1− ψ

)2

(g? + ε− f?)2 ≥ 1

2
ψ2(g? + ε− f?)2 .
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Otherwise, the linear case is optimal and the result follows by minimising over the

possible values of f(y).

(g(y)− f(y))2 + (g(x)− f(x))2 = (g(y)− f(y))2 + (g? + ε− f(x))2

≥ min
a∈R

[
(g(y)− a)2 + (g? + ε− ψf? − (1− ψ)a)2

]
=

(ψ(g? + ε− f?) + (1− ψ)(g? + ε− g(y)))
2

2− 2ψ + ψ2

≥ 1

2
ψ2(g? + ε− f?)2 ,

where the second equality follows by solving the quadratic and the last inequality

is naive bounding.

Figure 1: In the figure on the left, the horizontal grey line marks g? + ε = g(x).

Note that g(y) 6= g?+ε is only possible when y is on the boundary of D. The proof

of Lemma 5 shows that at least one of the red vertical lines is roughly ψ times the

length of the black line. The figure on the right shows the top down view.

Lemma 5 shows that sampling uniformly from entry/exit points of a ray ema-

nating from minimisers of f through a level set of f̄ is a good exploratory distribu-

tion for f . The depth of the cut made by the ray relative to the length of the ray

determines the constant β, with deeper cuts being more informative. This idea

cannot be applied directly because the resulting exploratory distribution depends

on f . The next lemma connects surface integrals over level sets to rays emanating

from a point outside the level set, effectively showing that sampling from a suitable

probability measure on a level set of f̄ is a good exploratory distribution for many

functions f ∈ F .

Before the statement of the next lemma, we define a quantity that measures a

kind of average depth/distance ratio for rays emanating from a point and passing

through a convex body. The concepts are illustrated in Fig. 2. Let K ⊂ Rd be a

convex body with 0 ∈ K and x /∈ K. Let πK(x, ·) : Px(K)→ ∂K be an inverse of

the projection Px defined by

πK(x, z) = arg miny∈K∩{z+tx:t∈R}〈y, x〉 .

For x ∈ Rd and z ∈ Px(K), define the depth/distance ratio by

ΨK(x, z) =
vol1(K ∩ [x, πK(x, z)])

vol1([x, πK(x, z)])
.
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The average depth/distance ratio with respect to the uniform probability measure

on Px(K) is

ΨK(x) =
1

vold−1(Px(K))

∫
Px(K)

ΨK(x, z) dvold−1(z) .

The maximum depth/distance ratio is Ψ∞K (x) = maxz∈Px(K) ΨK(x, z). A number

of properties of Ψ are collected in Section 4. The most important is that z 7→
ΨK(x, z) is concave on its domain Px(K).

Figure 2: For the configuration in the figure, πK(x, z) = y and ΨK(x, z) =

|y−w|/|y− x|, which is the ratio of the depth of K along the chord [x, y] and the

distance of the chord. The quantity ΨK(x) averages ΨK(x, z) with respect to the

uniform probability measure over all z in the shadow Px(K).

Lemma 6. Let D ⊂ Rd be a convex body and f, g : D → R be convex, ε > 0 and

K = {x ∈ D : g(x) ≤ g? + ε}. Let x? ∈ D be the minimiser of f and assume that

0 ∈ K and ΨK(x?) ∈ [1/(128d), 1/(32d)]. Then,∫
∂K

g dρ− f? ≤ 214d

√
max
θ∈Sd−1

(
vold−1(∂K)

vold−1(Pθ(K))

)∫
∂K

(f − g)2 dρ .

where ρ = vold−1 / vold−1(∂K) is the surface area probability measure on ∂K.

Proof of Lemma 6. Abbreviate Ψ(z) = ΨK(x?, z) and π(z) = πK(x?, z) and P =

Px? . Define λ : P (K) → R and Λ : P (K) → P (K) by λ(z) = 1 − Ψ(z) and

Λ(z) = λ(z)z. The rest of the proof is divided into three steps. The first uses

Lemma 15 to show that a large fraction of rays through K from x? are reasonably

deep. The second step connects surface integrals over ∂K to rays cutting K from

x? and the third puts together the pieces using Lemma 5.

Step 1: Preponderance of deep cuts Let B ⊂ P (K) be the set given by

B =

{
z ∈ P (K) :

Ψ(z)
1

vold−1(P (K))

∫
P (K)

Ψ dvold−1

∈ [1/4, 16]

}
,
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which is the set of points in P (K) where Ψ(z) is close to its mean. By Lemma 15

and concavity of Ψ (Lemma 8),

vold−1(B)

vold−1(P (K))
≥ 1

32
. (4)

Furthermore, by the assumptions in the lemma,

1

vold−1(P (K))

∫
P (K)

Ψ dvold−1 ∈
[

1

128d
,

1

32d

]
,

which implies that for z ∈ B,

1− λ(z) = Ψ(z) ∈
[

2−9

d
,

1

2d

]
. (5)

Step 2: Surface area to rays Let C = π(B) ⊂ ∂K. Define a function κ : C →
∂K so that [x?, y] ∩K = [κ(y), y], which is the point w in Fig. 2 and is chosen so

that for any z ∈ P (K),

κ(π(z)) = Ψ(z)x? + (1−Ψ(z))π(z) . (6)

Let D = κ(C). The goal in this step is to establish Eq. (7) below, which makes

the connection between rays and surface area. Let ϕ : D → [0,∞) be measurable.

Then the following holds:∫
C

ϕdvold−1 ≥
∫
B

ϕ ◦ π dvold−1∫
D

ϕdvold−1 ≥
1

2e

∫
B

ϕ ◦ κ ◦ π dvold−1 . (7)

The first inequality is true because the projection of ∂K onto P (K) only decreases

surface area. For the second inequality, differentiating Λ at z ∈ B yields D Λ(z) =

λ(z) Id +z∇λ(z)>, which exists vold−1-a.e. by convexity of λ. Hence,

det(D Λ(z)) = λ(z)d−1

(
1 +
〈∇λ(z), z〉
λ(z)

)
≥ λ(z)d−1

(
2− λ(0)

λ(z)

)
≥ 1

2e
. (8)

where the equality is Sylvester’s determinant theorem, the first inequality from

convexity of λ, so that λ(0) ≥ λ(z) − 〈∇λ(z), z〉. The last inequality follows

because for z ∈ B, λ(z) ≥ 1− 1/(2d) and λ(0) ≤ 1. The claim follows because, by

the definition of Λ and Eq. (6), P ◦ κ ◦ π = Λ, which implies that∫
D

ϕdvold−1 ≥
∫

ΛB

ϕ ◦ κ ◦ π ◦ Λ−1 dvold−1 ≥
1

2e

∫
B

ϕ ◦ κ ◦ π dvold−1 ,

where in the first inequality we again used the fact that projections decrease surface

area and in the second we used Eq. (8).
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Step 3: Combining Let z ∈ B and y = π(z) ∈ ∂K and x = κ(y) = Ψ(z)x? +

(1−Ψ(z))y ∈ ∂K. Hence, by Eq. (5) and Lemma 5, the following holds on B,

(f − g)2 ◦ π + (f − g)2 ◦ κ ◦ π ≥ 1

2
(g? + ε− f?)2Ψ2 ≥ (g? + ε− f?)2

219d2
. (9)

Therefore, by Eq. (4), Eq. (7) and Eq. (9), and recalling the definition of ρ in the

lemma statement,∫
∂K

(f − g)2 dρ ≥ 1

vold−1(∂K)

∫
C∪D

(f − g)2 dvold−1

≥ 1

2e vold−1(∂K)

∫
B

(
(f − g)2 ◦ π + (f − g)2 ◦ κ ◦ π

)
dvold−1

≥ (g? + ε− f?)2

220ed2

(
vold−1(B)

vold−1(∂K)

)
≥ (g? + ε− f?)2

225ed2
min

θ∈Sd−1

(
vold−1(Pθ(K))

vold−1(∂K)

)
.

Hence, since f? ≤ g? by assumption and g ≤ g? + ε on ∂K,∫
∂K

g dρ− f? ≤ 214d

√
max
θ∈Sd−1

(
vold−1(∂K)

vold−1(Pθ(K))

)∫
∂K

(f − g)2 dρ .

Remark 7. A convex body K ⊂ Rd is in minimal surface area position if its sur-

face area measure (as a measure on the sphere) is isotropic [1, §2.3]. Giannopoulos

and Papadimitrakis [7] show that for convex bodies K in minimal surface area

position,

max
θ∈Sd−1

(
vold−1(∂K)

vold−1(Pθ(K))

)
≤ 2d ,

which is sharp when K is a cube. Furthermore, for any convex body K, there

exists a linear bijection T : Rd → Rd such that TK is in minimal surface area

position.

Proof of Theorem 3. The proof is broken into three parts. First we construct the

basic exploratory distribution using Lemma 6. In the second step we define the

partitions. The final step puts together the pieces. Without loss of generality,

choose coordinates on K such that 0 is the minimiser of f̄ .

Step 1: Constructing exploratory distributions Let ε > 0 and define level

set Kε = {x : f̄(x) ≤ f̄? + ε}. Let Fε be the set of all f ∈ F with minimisers x?
for which

ΨKε(x?) ∈
[

1

128d
,

1

32d

]
.
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Let T : Rd → Rd be a linear bijection such that TKε is in minimal surface area

position and define probability measure ρε on ∂K by

ρε =
vold−1 ◦T

vold−1(∂(TKε))
,

which is the pullback of the normalised surface area measure on ∂(TKε). That is,

for any measurable ϕ : K → R,∫
∂Kε

ϕdρε =
1

vold−1(∂(TKε))

∫
∂(TKε)

ϕ ◦ T−1 dvold−1 .

Let f ∈ Fε with minimiser x? ∈ K. Since T is a linear bijection, both f ◦T−1 and

f̄ ◦ T−1 are convex functions from D = TK → [0, 1]. By Lemma 9,

ΨTKε(Tx?) = ΨKε(x?) ∈
[

1

128d
,

1

32d

]
.

Hence, by Lemma 6 and Remark 7, for any f ∈ Fε,∫
∂Kε

f̄ dρε − f? =
1

vold−1(∂(TKε))

∫
∂(TKε)

f̄ ◦ T−1 dvold−1−f?

≤ 214d

√
2d

vold−1(∂(TKε))

∫
∂(TKε)

(f̄ − f)2 ◦ T−1 dvold−1

= 214

√
2d3

∫
∂Kε

(f̄ − f)2 dρε ,

which shows that ρε satisfies Eq. (3) for all f ∈ Fε.

Step 2: Constructing a partition Let γ = 1 + 1/(9d) and ε0 > 0 a constant

to be tuned later and E = ε0{1, γ, γ2, . . .} ∩ [0, 1]. Let f ∈ F and 0 6= x? ∈ K
be its minimiser. By a continuity argument (Corollary 13), there exists an ε > 0

such that ΨKε(x?) = 1/(64d). The definition of E shows that if ε ≥ ε0, then there

exists a δ ∈ E such that δ ∈ [ε/γ, ε]. By convexity of f̄ and monotonicity of level

sets, 1
γKε ⊂ Kε/γ ⊂ Kδ ⊂ Kε. By Corollary 12,

ΨKδ(x?) ∈
[

1

128d
,

1

32d

]
.

Hence, by the definition of Fε, ⋃
ε≥ε0

Fε ⊂
⋃
ε∈E

Fε .

The previous step demonstrated the existence of an exploratory distribution for

each Fε. It remains to tune ε0 and handle the functions not in
⋃
ε∈E Fε. Define

F0 =
{
f ∈ F : f̄? − f? ≤ 2(f̄? − f(0))

}
∪
{
f ∈ F : f? ≥ f̄? − 1/n

}
.
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Shortly we show that F = F0 ∪
⋃
ε∈E Fε for a suitable choice of ε0. Before that,

let us check that the Dirac at 0 is a good exploratory distribution for f ∈ F0. Let

ρ0 be a Dirac at 0. Then,∫
K
f̄ dρ0 − f? = f̄? − f? ≤

1

n
+ 2|f̄? − f(0)| = 1

n
+

√
4

∫
K

(
f̄ − f

)2
dρ0 .

On the other hand, if f /∈ F0 with minimiser x?, then by the definition of F0 and

the assumption that f is n-Lipschitz,

1

2n
≤ f(0)− f(x?) ≤ n|x?| . (10)

Let ε > 0 be such that ΨKε(x?) = 1/(64d). Using the assumption that f̄ is

m-strongly convex means that

Kε ⊂
{
x ∈ Rd : |x| ≤

√
2ε/m

}
.

Therefore,

1

64d
= ΨKε(x?) ≤

2
√

2ε/m

|x?|
Eq. (10)

≤ 4n2
√

2ε/m .

Rearranging shows that ε ≥ m/(211d2n4) , ε0. Noticing the Eq. (10) also shows

that x? 6= 0, it follows that f ∈
⋃
ε∈E Fε. Altogether we have shown that F

F = F0 ∪
⋃
ε∈E

Fε

and that for each subset in the union there exists a good exploratory distribution.

Step 3: Combining By definition, |E| ≤
⌈
logγ(1/ε0)

⌉
with γ = 1 + 1/(9d).

Combining Lemma 4 with the exploratory distributions and partitions in steps 1

and 2 completes the proof.

4 Technical lemmas

Here we collect the necessary lemmas. The first four concern concavity, invariance

and approximate monotonicity of Ψ.

Lemma 8. Let K ⊂ Rd be a compact convex set with 0 ∈ K. Then, for any

x /∈ K the function z 7→ ΨK(x, z) is concave on Px(K).

Proof. Abbreviate Ψ(z) = ΨK(x, z). Parameterise K by

K = {z − αx : f(z) ≤ α ≤ g(z), z ∈ Px(K), α ∈ R} ,

11



where f : Px(K) → R is convex and g : Px(K) → R is concave (Fig. 3). Param-

eterise the chord connecting x and z − g(z)x by y(t) = (1 − t)x + tz − tg(z)x.

Then,

1−Ψ(z) = sup{t ∈ (0, 1) : y(t) /∈ K}
= max{t ∈ (0, 1) : f(tz) ≥ t+ tg(z)− 1}
= max{1/s : sf(z/s)− g(z) + s− 1 ≥ 0, s ∈ (0,∞)} .

But (z, s) 7→ sf(z/s)−g(z)+s−1 is the perspective of f minus a concave function

and hence is convex on Px(K)× (0,∞). Hence, since u 7→ 1/u is convex for u > 0,

1−Ψ(z) is convex and therefore Ψ is concave.

Figure 3: The construction used in the proof of Lemma 8.

Lemma 9. Let K ⊂ Rd be a convex body with 0 ∈ K and let x /∈ K. Then

ΨK(x) = ΨTK(Tx) for all linear bijections T : Rd → Rd.

Proof. Let Λ = PTx ◦ T ◦ πK(x, ·), which is a linear bijection between Px(K)

and PTx(TK). Furthermore, when z ∈ Px(K) and y = πK(x, z), then Ty =

πTK(Tx,Λ(x)), which means that

ΨTK(Tx,Λ(z)) =
vold−1([Tx, Ty] ∩ TK)

vold−1([Tx, Ty])
=

vold−1([x, y] ∩K)

vold−1([x, y])
= ΨK(x, z) .

Then,

ΨK(x) =
1

vold−1(Px(K))

∫
Px(K)

ΨK(x, z) dvold−1(z)

=
1

vold−1(Px(K))

∫
Px(K)

ΨTK(Tx,Λ(z)) dvold−1(z)

=
1

vold−1(PTx(TK))

∫
Λ(Px(K))

ΨTK(Tx, y) dvold−1(y)

= ΨTK(Tx) .

12



where the first equality is the definition of ΨK(x), the second inequality follows

because ΨK(x, z) = ΨTK(TK,Λ(z)) and the third by a change of measure.

Lemma 10. Let A and B be convex bodies such that 0 ∈ A ⊂ B ⊂ γA for some

γ > 1. Assume that Ψ∞γA(x) ≤ 1/2. Then, for any x /∈ γA,

ΨγA(x) ≤ (2γ − 1)
d+1

ΨB(x) .

Proof. Let Λ(z) = z/(2γ − 1). We claim that

ΨγA(x, z) ≤ (2γ − 1)2ΨB(x,Λ(z)) . (11)

Setting the proof of this aside for a moment, the consequence is that∫
Px(γA)

ΨγA(x, z) dvold−1(z) ≤ (2γ − 1)2

∫
Px(γA)

ΨB(x,Λ(z)) dvold−1(z)

= (2γ − 1)d+1

∫
Λ(Px(γA))

ΨB(x, y) dvold−1(y)

≤ (2γ − 1)d+1

∫
Px(B)

ΨB(x, y) dvold−1 .

The lemma follows since vold−1(Px(B)) ≤ vold−1(Px(γA)). It remains to establish

Eq. (11), which is a high-school exercise in length chasing. The quantities that

follow are defined in the caption of Fig. 4.

|p− u|
|p− x|

=
|y − w|
|y − x|

=
|y − v||u− q|
|y − x||v − q|

=
|u− q|
|v − q|

ΨγA(x, z) =
1

γ
ΨγA(x, z) .

Hence, there exists a t ∈ [r, z] such that ΨB(x, t) ≥ ΨγA(x, z)/γ. Furthermore,

|u− w|
|y − p|

= 1− |p− u|
|p− x|

= 1− |u− q|
|v − q|

ΨγA(x, z)
|u− w|
|y − q|

=
|v − u|
|v − q|

=
γ − 1

γ
.

Dividing one by the other yields

|r − q|
|z − q|

=
|p− q|
|y − q|

= 1− |y − p|
|y − q|

= 1−
(
γ − 1

γ

)
1

1−ΨγA(x, z)/γ
∈
[

1

2γ − 1
,

1

γ

]
,

where the final relation holds because ΨγA(x, z) ∈ [0, 1/2] by assumption. There-

fore r ∈ [Λ(z), z] and hence, by the concavity of ΨB ,

ΨB(x,Λ(z)) ≥ 1

2γ − 1
max

t∈[Λ(z),z]
ΨB(x, t) ≥ ΨγA(x, z)

γ(2γ − 1)
≥ ΨγA(x, z)

(2γ − 1)2
.

13



Figure 4: The construction used in the proof of Lemma 10, which has q = 0,

y = πγA(x, z). The point v is chosen so that [x, y] ∩ γA = [v, y]. The point u is

such that [v, q] ∩ A = [u, q] and p is the intersection of [q, y] and the affine hull

aff({x, u}). Lastly, w is the point in aff({x, y}) such that [u,w] is parallel to [q, y]

and r = Px(p).

Lemma 11. If A ⊂ Rd is a convex body with 0 ∈ A and γ > 1. Then ΨγA(x) ≥
ΨA(x) for all x /∈ γA.

Proof. The first step is to argue that ΨγA(x, γz) ≥ ΨA(x, z), which follows using

the notation in Fig. 5 because

ΨγA(x, γz) =
|γy − w|
|γy − x|

=
|γy − u|
|γy − γx|

≥ ΨγA(γx, γz) = ΨA(x, z) .

Hence,

ΨγA(x) =
1

vold−1(Px(γA))

∫
Px(γA)

ΨγA(x, z) dvold−1(z)

≥ 1

vold−1(Px(γA)

∫
Px(γA)

ΨA(x, z/γ) dvold−1(z)

=
γd−1

vold−1(Px(γA))

∫
Px(A)

ΨA(x, y) dvold−1(y)

=
1

vold−1(Px(A))

∫
Px(A)

ΨA(x, y) dvold−1(y)

= ΨA(x) .
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Figure 5: The construction used in the proof of Lemma 11. The point y is

πA(z) for some z and γy = πγA(γz). The points v and w are chosen so that

[γy, γx] ∩ γA = [v, γy] and [γy, x] ∩A = [γy, w]. Finally, u is chosen on the chord

[γx, γy] so that u− w is parallel to x.

Corollary 12. Suppose that A and B are convex bodies and 0 ∈ 1
γA ⊂ B ⊂ A

for γ = 1 + 1/(9d). Then, for any x /∈ A with ΨA(x) ≤ 1/(2d),

ΨB(x)

ΨA(x)
∈ [1/2, 2] .

Proof. The second part of Lemma 14 and concavity of z 7→ ΨA(x, z) shows that

Ψ∞A (x) ≤ 1/2. By assumption, 1
γA ⊂ B ⊂ A, which implies that 1

γB ⊂
1
γA ⊂ B

and so by Lemmas 10 and 11,

ΨB(x) ≤ (2γ − 1)
d+1

ΨA(x) (Lemma 10)

≤ (2γ − 1)
d+1

ΨA/γ(x) (Lemma 11)

≤ (2γ − 1)
2d+2

ΨB(x) , (Lemma 10)

where the last inequality also uses the fact that Ψ∞B (x) ≤ Ψ∞A (x). The result

follows from the choice of γ and naive bounding.

Corollary 13. Suppose that f ∈ F is minimised at 0 and let Kε = {y ∈ K :

f(y) ≤ f? + ε}. Then, for any x 6= 0, there exists an ε > 0 such that

ΨKε(x) =
1

64d
.

Proof. That ε 7→ Ψ∞Kε(x) is continuous and non-decreasing is straightforward. Let

εmax be the smallest value such that

Ψ∞Kεmax
(x) = 1/64 ,

which by the second part of Lemma 14 means that ΨKεmax
(x) ≥ 1/(64d). Strong

convexity of f ensures level sets contract to a point as ε tends to zero and hence,
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limε→0 ΨKε(x) = 0. Hence, by the intermediate value theorem it suffices to show

that ε 7→ ΨKε(x) is continuous for ε ∈ (0, εmax]. Let ε ∈ (0, εmax] and γ > 1.

By convexity of f , 1
γKγε ⊂ Kε ⊂ Kγε. Repeating the argument in the proof of

Corollary 12 shows that ΨKε(x) tends to ΨKγε(x) as γ tends to 1.

The next two lemmas are probably known. They concern the law of a concave

random variable under the uniform probability measure on the domain, which is

shown to have constant mass about its expectation.

Lemma 14. Let A ⊂ Rd−1 be convex and ϕ : A→ [0,∞) be concave. Then,

1

vold−1(A)

∫
A

ϕ2 dvold−1 ≤ 25/2

(∫
A
ϕdvold−1

vold−1(A)

)2

.

Furthermore, |ϕ|∞ ≤ d
vold−1(A)

∫
A
ϕdvold−1.

Proof. Let B = {(x, y) : x ∈ A, |y| ≤ ϕ(x)} ⊂ Rd, which is convex. Define

θ = (0, . . . , 0, 1) and h(t) = vold−1(B ∩ (θ⊥ + tθ)), which is 1
d−1 -concave by

Brunn’s concavity principle and hence log-concave by the arithmetic-geometric

mean inequality. Then,

1

vold−1(A)

∫
A

ϕ2 dvold−1 =
1

vold−1(A)

∫
B

|〈x, θ〉|dvold(x)

≤ 1

vold−1(A)

(
vold(B)

∫
B

〈x, θ〉2 dvold(x)

)1/2

=
1

vold−1(A)

(
vold(B)

∫ ∞
−∞

t2h(t) dt

)1/2

≤ 1

vold−1(A)

(
2 vold(B)

h(0)2

(∫ ∞
−∞

h(t) dt

)3
)1/2

= 25/2

(∫
A
ϕdvold−1

vold−1(A)

)2

,

where the first inequality follows from Cauchy-Schwarz and the second from Brunn’s

concavity principle and corollary 2.24 in the notes by Tkocz [15]. The last equal-

ity follows since
∫∞
−∞ h(t) dt = vold(B) = 2

∫
A
ϕdvold−1. For the second part, let

x ∈ A be a point with |ϕ|∞ = ϕ(x) and let C ⊂ B be the convex hull of (x, ϕ(x))

and A× {0}. Then,∫
A

ϕdvold−1 = vold(B) ≥ vold(C) =
ϕ(x) vold−1(A)

d
,

where the inequality is due to convexity of B and the second equality by the

formula for the volume of a cone.
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Lemma 15. Let A ⊂ Rd−1 be convex and ϕ : A → [0,∞) be concave and ν =

dvold−1 / vold−1(A) be the uniform probability measure on A. Then,

ν

({
x ∈ A :

ϕ(x)∫
A
ϕdν

∈ [1/4, 16]

})
≥ 1/32 .

Proof. By Markov’s inequality,

ν

({
x ∈ A : ϕ(x) ≤ 16

∫
A

ϕdν

})
≥ 1− 1

16
.

On the other hand, by the Paley–Zygmund inequality and Lemma 14,

ν

({
x ∈ A : ϕ(x) ≥ 1

4

∫
A

ϕdν

})
≥
(

1− 1

4

)2
(∫
A
ϕdν

)2∫
A
ϕ2 dν

≥ 9

213/2
.

Combining the previous two displays and naive simplification yields the result.

5 Lipschitz and strong convexity relaxation

The last ingredient of the proof is to show that the Lipschitz and strong convexity

assumptions are indeed mild. More or less the same argument has been used

elsewhere [4, 2].

Proposition 16. Theorem 1 follows from Theorems 2 and 3.

Proof. Let F be the set of n-Lipschitz and m-strongly convex functions from

convex body J ⊂ Rd to [0, 1]. Theorems 2 and 3 show that

R∗n(F ) ≤ cd2.5
√
n log(ndiam(J )/m) . (12)

Suppose that K ⊂ Rd is a convex body with Bn1 ⊂ K and let (ft)
n
t=1 be an

arbitrary sequence of convex functions from K to [0, 1], possibly non-Lipschitz

and non-strongly convex. Define dist(x,A) = miny∈A |x − y| and J = {x ∈
K : dist(x, ∂K) ≥ 1/n}, which is a convex subset of K. Next, let (f ′t)

n
t=1 be the

sequence of convex functions from J → [0, 1] given by

f ′t(x) =

(
n

n+ 1

)(
ft(x) +

1

n

(
|x|

diam(K)

)2
)
∈ [0, 1] .

Boundedness of ft ensures that f ′t is n-Lipschitz and m-strongly convex with m =

1/((n+ 1) diam(K)2). Running the policy for witnessing Eq. (12),

cd2.5
√
n log(ndiam(J )/m) ≥ max

y∈J
E

[
n∑
t=1

f ′t(xt)− f ′t(x)

]

≥ n

n+ 1

[
max
y∈J

E

[
n∑
t=1

ft(xt)− ft(y)

]
− 1

]

≥ n

n+ 1

[
max
x∈K

E

[
n∑
t=1

ft(xt)− ft(x)

]
− 2

]
(13)
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Only the last inequality presents any challenge. To see why this is true, let x ∈ K
be the minimiser of

∑n
t=1 ft and let y = (1− 1/n)x. Since Bn1 ⊂ K, it follows that

y ∈ K. Furthermore, since ft is convex and bounded in [0, 1],

f(y) ≤ (1− 1/n)f(x) +
1

n
f(0) ≤ f(x) +

1

n
.

The result follows by rearranging Eq. (13), noting that diam(J ) ≤ diam(K) and

by substituting the value of m.
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