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Part three

• Nonlinear function
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• Further topics



Notes before we start

• Please ask questions anytime!

• There are exercises. If you have time, you will benefit by attempting
them. I will update slides with solutions at the end

• Very few prerequisites – elementary probability only

• There are some tricky concepts!

• I am around if you want to chat/ask questions out of lectures



Why RL theory?

• Use theory to guide algorithm design
• Understand what is possible
• Understand why existing algorithms work
• Understand when existing algorithms may not work



Reinforcement Learning

agent environment

Action

Reward/Observation

Learner interacts with unknown environment taking
actions and receiving observations

Goal is to maximise cumulative reward in some sense



Markov Decision Processes (MDPs)

• An MDP is a tupleM = (S ,A ,P ,R )

• S is a finite or countable set of states
• A is a finite set of actions
• P is a probability kernel from S × A to S
• R is a probability kernel from S × A to [0, 1]

Notation

P (s ′|s,a) is the probability of transitioning to state s ′ when taking action
a in state s

Mean reward when taking action a in state s is r(s,a) =
∫
R rR (d r|s,a)



Three types value/interaction protocol

Finite horizon Learner starts in an initial state. Interacts with the MDP
for H rounds and is reset to the initial state

Discounted Learner interacts with the MDP without resets. Rewards are
geometrically discounted.

Average reward Learner interacts with the MDP without resets. We care
about some kind of average reward

Discounted and finite horizon are often somehow
comparable and technically similar

Average reward introduces a lot of technicalities



Finite horizon MDPs

• Learner starts in some initial state s1 ∈ S
• Interacts with the MDP for H rounds
• Assume S =

⊔H+1
h=1 Sh with S1 = {s1} and SH+1 = {sH+1} and

P (Sh+1|s,a) = 1 for all s ∈ Sh, a ∈ A and h ∈ [H]

P (sH+1|sH+1,a) = 1 and r(sH+1,a) = 0



Picture

s1 sH+1

S1 S2 S3 SH SH+1



Finite horizon MDPs

• A stationary deterministic policy is a function π : S → A
• Policy and MDP induce a probability measure on

state/action/reward sequences
• The probability that π and the MDP produce interaction sequence
s1,a1, r1, . . . , sH,aH, rH is

H∏
h=1

1π(sh)=ahR (rh|sh,ah)P (sh+1|sh,ah)

• Expectations with respect to this measure are denoted by Eπ. For
example,

vπ(s1) = Eπ

[
H∑
h=1

rh

]

is the expected cumulative reward over one episode



Value and q-value functions

Given a stationary policy π the value function vπ : S → R is the function

vπ(s) = Eπ

[
H∑
u=h

ru

∣∣∣∣sh = s

]
for all s ∈ Sh

Questionable formalism: What if s is not reachable under π

q-values

Value of policy π when starting in state s, taking action a and following π
subsequently

qπ(s,a) = r(s,a) +
∑
s ′∈S

P (s ′|s,a)vπ(s ′)



Bellman operator

• Operators on the spaces of value/q-value functions

(T πq)(s,a) = r(s,a) +
∑
s ′∈S

P (s ′|s,a)q(s ′,π(s ′))

(T πv)(s) = r(s,π(s)) +
∑
s ′∈S

P (s ′|s,π(s))v(s ′)

Exercise 1 Prove that
1. vπ is the unique fixed point of T π over all functions {q : S × A → R}

2. qπ is the unique fixed point of T π over all functions {v : S → R}



Optimal policies

The optimal policy maximises vπ over all states

v?(s) = max
π
vπ(s)

Proposition 1 There exists a stationary policy π? such that

vπ
?
(s) = v?(s) for all s ∈ S

Optimal q-value is q?(s,a) = qπ?
(s,a)

Bellman optimality operator

(T q)(s,a) = r(s,a) +
∑
s ′∈S

P (s ′|s,a) max
a ′∈A

q(s ′,a ′)

(T v)(s) = max
a∈A

r(s,a) +
∑
s ′∈S

P (s ′|s,a)v(s ′)

Exercise 2 Show that
1. q? is the unique fixed point of T over all functions {q : S × A → R}

2. v? is the unique fixed point of T over all functions {v : S → R}
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Three Learning Models

Online RL the learner interacts with the environment as if it were in the
real world

Local planning the learner can ‘query’ the environment at any
state/action pair it has seen before

Generative model the learner can ‘query’ the environment at any
state/action pair

Generative model
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Learning with a Generative Model

• Learner knows S , A and the initial state s1 but not P and r
• Learner and environment interact sequentially
• Learner chooses any state/action pair (st,at) ∈ S × A
• Observes rt, s ′t with rt ∼ R (st,at) and s ′t ∼ P (st,at)

How many samples are needed to find a near optimal
policy?

Sometimes want a policy that is near optimal at all
states. Sometimes only care about the initial state



Local planning

Same as learning with a generative model, but learner
can only query states it has observed before

• Learner knows S , A and s1 but not P and r
• S1 = {s1}

• Learner and environment interact sequentially
• Learner chooses any (st,at) ∈ S × A with st ∈ St
• Observes rt, s ′t with rt ∼ R (st,at) and s ′t ∼ P (·|st,at)
• St+1 = St ∪ {s ′t}



Online RL

• Learner knows S and A but not P and r
• Learner interacts with MDP in episodes
• In episode k the learner starts in state sk1 = s1 and interacts with the

MDP for H rounds producing history

sk1 ,a
k
1 , r

k
1 , s

k
2 ,a

k
2 , . . . , r

k
H, s

k
H

• akt is the action played by the learner in state skt
• skt is sampled from P (·|skt−1,a

k
t−1)

• rkt is sampled from R (skt ,a
k
t )

How many times does the learner play a suboptimal
policy? How small is the regret?



Example of local planning

Finding optimal policies in simulators



Bandits

• A (very simple) bandit is a single-state MDP: S = {s1}

• Useful examples
• Can be analysed very deeply
• Ideas often generalise to RL – optimism, Thompson sampling and

many other exploration techniques were first introduced in bandits
• Practical in their own right



Tabular MDPs



Learning tabular MDPs with a generative model

• Unknown MDP (S ,A ,P , r)

• Access to a generative model

How many queries to the generative model are needed
to find a near-optimal policy?



Learning tabular MDPs with a generative model

• Suppose we makem queries to the generative model from each
state-action pair
• Observe data (st,at, rt, s

′
t)
n
t=1 with n = m|S ||A |

• Estimate p and r by

P̂ (s ′|s,a) =
1

m

n∑
t=1

1(s,a,s ′)=(st,at,s ′t)

r̂(s,a) =
1

m

n∑
t=1

1(s,a)=(st,at)rt

• Output the optimal policy π for the empirical MDP (S ,A , P̂ , r̂)



Necessary aside



Concentration

Hoeffding’s bound Suppose that X1, . . . ,Xm are i.d.d. random variables
in [−B,B] with mean µ. Then, for all δ ∈ (0, 1),

P

(∣∣∣∣∣ 1m
m∑
i=1

Xi − µ

∣∣∣∣∣ > cnstB

√
log(1/δ)

m

)
6 δ

Categorical concentration Suppose that S1, . . . ,Sm are i.d.d. random
elements in S sampled from P and P̂(s) = 1

m

∑m
i=1 1Si=s. Then,

P

(
‖P − P̂‖1 > cnst

√
|S | log(1/δ)

m

)
6 δ .



Analysis

- π∗ is true optimal policy
- π is optimal policy of empirical MDP
- v̂ is value function of empirical MDP

vπ
?
(s1) − v

π(s1)

error

= vπ
?
(s1) − v̂

π?
(s1)

(A)

+ v̂π
?
(s1) − v̂

π(s1)

(B)

+ v̂π(s1) − v
π(s1)

(C)

- (B) is negative because π is optimal in empirical MDP
- (A) and (C) are the differences in value functions with a given policy



A useful lemma

• Compare the values of a single policy on different MDPs
• M = (S ,A ,P , r) with value function v : S → R

• M̂ = (S ,A , P̂ , r̂) with value function v̂ : S → R

Lemma 1 (Value decomposition lemma) For all policies π

vπ(s1) − v̂
π(s1) = Eπ

[
H∑
h=1

(r− r̂)(sh,ah) + 〈P (sh,ah) − P̂ (sh,ah), v̂
π〉

]

Exercise 3 Prove Lemma 1



Bounding the error

With probability at least 1− δ for all s ∈ Sh and a ∈ A ,

|(r− r̂)(s,a)| 6 cnst

√
log(|S ||A |/δ)

m

‖P̂ (s,a) − P (s,a)‖1 6 cnst

√
|Sh+1| log(|S ||A |/δ)

m

By Lemma 1

vπ(s1) − v̂
π(s1) = Eπ

[
H∑
h=1

(r− r̂)(sh,ah) + 〈P (sh,ah) − P̂ (sh,ah), v̂
π〉

]

6 Eπ

[
H∑
h=1

(r− r̂)(sh,ah) + ‖P (sh,ah) − P̂ (sh,ah)‖1‖v̂π‖∞
]

6 cnst Eπ

[
H∑
h=1

√
log(|S ||A |/δ)

m
+H

√
|Sh+1| log(|S ||A |/δ)

m

]

6 cnst |S |

√
|A |H3 log(|S ||A |/δ)

#queries
m =

#queries

|S ||A |



Bounding the error

By the same argument

v̂π
?
(s1) − v

π?
(s1) 6 cnst |S |

√
H3|A | log(|S ||A |/δ)

#queries

Combining everything gives:
Theorem 2 The optimal policy in the empirical MDP satisfies with
probability at least 1− δ

vπ
?
(s1) − v

π(s1) 6 cnst |S |

√
|A |H3 log(|S ||A |/δ)

#queries

Corollary 3 If

#queries >
cnstH3|S |2|A | log(|S ||A |/δ)

ε2

Then with probability at least 1− δ, vπ?
(s1) − v

π(s1) 6 ε



Are these bounds tight?

Number of samples needed for ε-accuracy

n =
cnstH3|S |2|A | log(|S ||A |/δ)

ε2

• 1/ε2 is the standard statistical dependency – likely optimal
• |A ||S |2 parameters in the transition matrix
• Rewards scale in [0,H]

• A good guess would be H
2|S |2|A | log(1/δ)

ε2



Dependence on |S |

Key inequality:

〈P̂ (s,a) − P (s,a), v̂π〉 6 ‖P̂ (s,a) − P (s,a)‖1‖v̂π‖∞
Remember,

P̂ (s ′|s,a) =
1

m

m∑
i=1

1si=s ′

Then

〈P̂ (s,a) − P (s,a), v̂π〉 =
∑
s ′

(P̂ (s ′|s,a) − P (s ′|s,a))v̂π(s ′)

=
1

m

m∑
i=1

∑
s ′

(1si=s ′ − P (s ′|s,a))v̂π(s ′)

∆i

whp
6 cnstH

√
log(1/δ)

m

(∆i)
m
i=1 are independent and |∆i| 6 H and E[∆i] = 0



Dependence on |S |

Repeating the previous analysis gives the following

Theorem 4 If

n =
cnstH4|S ||A | log(|S ||A |/δ)

ε2

then with probability at least 1− δ, vπ?
(s1) − v

π(s1) 6 ε

Exercise 4 Prove Theorem 4



Dependence on H

Dependence on H is also loose

σ2π(s,a) = Vs ′∼P (s,π(s))[v
π(s ′)]

Exercise 5 (Sobel 1982) Show that

Vπ

[
H∑
h=1

rh

]
= Eπ

[
H∑
h=1

σ2π(sh,ah)

]

Naive bounds

Vπ

[
H∑
h=1

rh

]
6 H2 Eπ

[
H∑
h=1

σ2π(sh,ah)

]
6 H3



Dependence on H

Repeating the previous analysis and assuming known rewards (again...)

vπ(s1) − v̂
π(s1) = Eπ

[
H∑
h=1

〈P (sh,ah) − P̂ (sh,ah), v̂
π〉

]

. Eπ

[
H∑
h=1

√
σ2π(sh,ah) log(|S ||A |/δ)

m

]

6

√√√√H

m
Eπ

[
H∑
h=1

σ2π(sh,ah)

]
log(|S ||A |/δ)

=

√√√√H

m
Vπ

[
H∑
h=1

rh

]
log(|S ||A |/δ)

6

√
H3|S ||A |

#queries
log(|S ||A |/δ)



Final result

Theorem 5 (Azar et al. 2012) If

n =
cnst |S |||A |H3 log(|S ||A |/δ)

ε2
+ lower order

then vπ?
(s1) − v

π(s1) 6 ε

Matches lower bound up to constant factors and lower order terms



Learning online

• Online model
• Learner starts at initial state and interacts with the MDP for an

episode
• Cannot explore arbitrary states as usual
• Our learner will choose stationary polices π1, . . . ,πn over n episodes
• Assume the reward function is known in advance for simplicity



Regret

Regret is the difference between the expected rewards collected by the
optimal policy and the rewards collected by the learner

Regn =

n∑
t=1

v?(s1) − v
πt(s1)

Exploration/exploitation dilemma
Learner wants to play πt with vπt close to v? but needs to gain
information as well



Optimism

Standard tool for acting in the face of uncertainty
since Lai [1987] and Auer et al. [2002]

Intuition

Act as if the world is as rewarding as plausibly possible

Mathematically

πt = argmax
π

max
M∈Ct−1

vπM(s1)

where Ct−1 is a confidence set containing the true MDP with high
probability constructed using data from the first t− 1 episodes



Confidence set

Ct =

{
Q : ‖Q (s,a) − P̂t(s,a)‖1 6 cnst

√
|Ss| log(n|S ||A |)

1+Nt(s,a)
∀s,a

}

where
• Nt(s,a) is the number of times the algorithm played action a in

state s in the first t episodes
• Ss is the number of states in the layer after state s

Proposition 2 P ∈ Ct for all episodes t ∈ [n] with probability at least
1− 1/n

Exercise 6 Prove Proposition 2



Optimism

Regret in episode t is

v?(s1) − v
πt(s1)

Optimistic environment/policy

Q t = argmax
Q ∈Ct−1

max
π
vπQ (s1) πt = argmax

π
vπQ t

(s1)

Key point: if P ∈ Ct−1, then

vπtQ (s1) > v
∗(s1)

v?(s1) − v
πt(s1) 6 v

πt
Q t
(s1) − v

πt(s1)



Optimism
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π
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vπtQ (s1) > v
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v?(s1) − v
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πt
Q t
(s1) − v
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Analysis

E[Regn] = E

[
n∑
t=1

v?(s1) − v
πt(s1)

]

. E

[
n∑
t=1

vπtQ t(s1) − v
πt(s1)

]
(Optimism)

= E

[
n∑
t=1

H∑
h=1

〈Q t(s
t
h,a

t
h) − P (sth,a

t
h), v

πt
Q t〉

]
(Lemma 1)

= E

[
n∑
t=1

H∑
h=1

‖Q t(s
t
h,a

t
h) − P (sth,a

t
h)‖1‖v

πt
Q t‖∞

]
(Hölder’s inequality)

6 cnstHE

[
n∑
t=1

H∑
h=1

√
|Sh+1| log(1/δ)

1+Nt−1(sth,a
t
h)

]
(Def. of conf.)



Analysis (cont)

E[Regn] 6 cnstHE

[
n∑
t=1

H∑
h=1

√
|Sh+1| log(1/δ)

1+Nt−1(sth,a
t
h)

]

= cnstHE

[
H∑
h=1

∑
s∈Sh

∑
a∈A

n∑
t=1

1sth=s,ath=a

√
|Sh+1| log(n|A ||S |/δ)

1+Nt−1(s,a)

]

= cnstHE

 H∑
h=1

∑
s∈Sh

∑
a∈A

Nn−1(s,a)∑
u=0

√
|Sh+1| log(n|A ||S |/δ)

1+ u


6 cnstHE

[
H∑
h=1

∑
s∈Sh

∑
a∈A

√
Nn−1(s,a)|Sh+1| log(n|S ||A |/δ)

]
6 cnstH|S |

√
|A |n log(n|A ||S |/δ)



Summary

• Regret of optimistic algorithm is

E[Regn] 6 cnstH|S |
√
|A |n log(n|A ||S |)

• With better confidence intervals and analysis

E[Regn] 6 cnstH
√
|S ||A |n log(n|A ||S |)

Exercise 7 Show how to compute the optimistic algorithm in
polynomial time

Exercise 8 Modify the algorithm to handle unknown rewards

Algorithm sometimes called UCRL (Upper Confidence for RL)

Original designed for average reward MDP setting [Auer et al.,
2009]



Comparing to the bounds with a generative model

• Best regret bound: E[Regn] 6 cnstH
√
|S ||A |n log(n|A ||S |)

• Average regret

1

n
E[Regn] 6 cnstH

√
|S ||A | log(n|A ||S |)

n
6 ε

⇐⇒ n >
H2|S ||A | log(n|A ||S |)

ε2

• H queries per episode
• Sample complexity with a generative model:

H3|S ||A | log(|A ||S |/δ)
ε2



Relation to sample complexity

An alternative notion to regret

A learner is (ε, δ)-PAC if

P

(
n∑
t=1

1 (v∗(s1) − v
πt(s1) > ε) > S(ε, δ)

)
6 δ

Similar optimistic algorithm has

S(ε, δ) 6
cnstH2|S ||A | log(|S ||A |/δ)

ε2

Sample complexity bounds like this imply regret bounds
Dann et al. [2017]



Other algorithmic approaches

• UCB-VI [Azar et al., 2017]: Backwards induction in each episode

q̃(s,a) = r̂(s,a) + 〈P̂ (s,a), ṽ〉+ bonus ṽ(s) = max
a
q̃(s,a)

• Thompson sampling [Ouyang et al., 2017]

Q t ∼ Posteriort−1 πt = argmax
π

vπQ t

• Information-directed sampling [Lu et al., 2021]

πt = argmin
π

Regret(π)2

Inf. gain(π)

• Optimistic Q-Learning [Jin et al., 2018]

q(s,a)← (1− αt)q(s,a) + αt(r+ max
a ′∈A

q(s ′,a ′) + bt)

• E2D [Foster et al., 2021]



Value-seeking vs information-seeking

Bandit with Graph Feedback

a

•••¥ Informative Action

① y 0
.



A note on conservative algorithms

Algorithms that use confidence intervals for exploration
are at the mercy of their designers cleverness

Loose confidence intervals⇐⇒ slow learning

Confidence intervals based on asymptotics may not be
valid – can lead to linear (!) regret



Instance-dependent bounds

Maybe the focus on minimax bounds is misguided

• Instance-dependent regret is well understood in bandits

Regn = O

 ∑
a:∆a>0

log(n)

∆a


• We have asymptotic problem-dependent bounds for MDPs [Tirinzoni

et al., 2021]
• Hard to tell how relevant asymptotic-style problem-dependent

bounds are for MDPs



Real problem |S | is usually enormous
• Our hypothesis class does not encode enough structure
• Number of states in most interesting problems is enormous
• May never see the same state multiple times
• We need ways to impose structure on huge MDPs
• Conflicting goals:

Structure needs to be
- restrictive enough that learning is possible
- flexible enough that the true environment is

(approximately) in the class



Linear function approximation

Slides available at
https://tor-lattimore.com/downloads/RLTheory.pdf

https://tor-lattimore.com/downloads/RLTheory.pdf


Function approximation

Represent (part of) huge MDP by low(er) dimension objects

There are lots of choices
• Represent MDP dynamics and rewards (model-based)
• Represent value functions or q-value functions (model-free)



Remember

• MDP (S ,A ,P , r)
• Value functions: vπ : S → R and qπ : S × A → R

• Optimal value functions: v? and q?
• Rewards in [0, 1]. Episodes of length H
• Layered MDP assumption

Generative model

,

3 2

I

4

5 Online
10

2 3 4 5

,7 g i
•

9 7
"

. 8
.

9 10 11

Local Access
13

14 If

2
.

.

6
. .

It
IS

"

16 17
1

7 10

3
4

-

8 9

5
I 1



Linear function approximation

• Let φ(s,a) ∈ Rd be a feature vector associated with each
state/action pair
• Assume that for all policies π there exists a θ such that

qπ(s,a) = 〈φ(s,a), θ〉

• Dynamics may still be incredibly complicated
• But generalisation across q-values is now possible



A necessary aside (linear regression)



Least squares

• Given covariates a1, . . . ,an ∈ Rd and responses y1, . . . ,yn with

yt = 〈at, θ?〉+ ηt

θ? ∈ Rd is unknown (ηt)
n
t=1 is noise and yt bounded in [−H,H]

• Estimate θ? with least squares

θ̂ = argmin
θ

n∑
t=1

(〈at, θ〉− yt)2 = G−1
n∑
t=1

atyt

with G =
∑n
t=1 ata

>
t the design matrix

• Conc: ‖θ̂− θ?‖G , ‖G1/2(θ̂− θ?)‖ . H
√

log(1/δ) + d , β

|〈a, θ̂− θ?〉| 6 ‖a‖G−1‖θ̂− θ?‖G 6 β‖a‖G−1



Least squares

• Given covariates a1, . . . ,an ∈ Rd and responses y1, . . . ,yn with

yt = 〈at, θ?〉+ ηt

θ? ∈ Rd is unknown (ηt)
n
t=1 is noise and yt bounded in [−H,H]

• Estimate θ? with least squares

θ̂ = argmin
θ

n∑
t=1

(〈at, θ〉− yt)2 = G−1
n∑
t=1

atyt

with G =
∑n
t=1 ata

>
t the design matrix

• Conc: ‖θ̂− θ?‖G , ‖G1/2(θ̂− θ?)‖ . H
√

log(1/δ) + d , β

|〈a, θ̂− θ?〉| 6 ‖a‖G−1‖θ̂− θ?‖G 6 β‖a‖G−1
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Geometric interpretation

← {⊖ : 11-0 - E- ii. ≤ 132}
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Experimental design

• Suppose we get to choose a1, . . . ,an from A ⊂ Rd

• Estimate θ? by θ̂
• Error in direction a is proportion to ‖a‖G−1

• How to choose the design to minimise maxa∈A ‖a‖G−1

Theorem 6 (Kiefer and Wolfowitz 1960) For all compact A ⊂ Rd there
exists a distribution ρ on A such that

max
a∈A
‖a‖G(ρ)−1 6

√
d G(ρ) =

∑
a∈A

ρ(a)aa>

If we choose n experiments a1, . . . ,an in proportion to ρ, then

max
a∈A

|〈a, θ̂− θ?〉|
whp

6 β‖a‖G−1 = β

√
‖a‖2

G(ρ)−1

n
6 β

√
d

n
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Geometric interpretation

Kiefer-Wolfowitz distribution is supported on (a subset of) the minimum
volume centered ellipsoid containing A



Computation

The support of the Kiefer-Wolfowitz distribution may have size d(d+ 1)/2

Theorem 7 There exists a distribution π supported on at most
cnstd log logd points such that

‖a‖2G(π)−1 6 2d

Can be found using Frank-Wolfe and careful
initialisation [Todd, 2016]



Least-squares ‘policy iteration’

Generative model setting

Given feature map φ : S × A → Rd

Assumption 1 For all π there exists a θ such that qπ(s,a) = 〈θ,φ(s,a)〉

Start with arbitrary policy πH+1

for h = H to 1

- Estimate qπh+1 by some q̂h+1

- Update policy πh(s) =

{
πh+1(s) if s /∈ Sh
argmaxa∈A q̂

h+1(s,a) otherwise



Least-squares ‘policy iteration’
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Policy evaluation

• Given a policy π, how to estimate qπ(s,a) with a generative model
and linear function approximation?
• Find an optimal design ρ on {φ(s,a) : s,a ∈ S × A }

• Sample rollouts starting from coreset of ρ in proportion to ρ
following policy π to estimate qπ(s,a) on the coreset
• Use least squares to generalise to all state/action pairs

H1



Policy evaluation (rollouts)

• Given policy π and state-action pair (s,a) sample a rollout starting in
state s ∈ Sh and taking action a and subsequently taking actions
using π
• Collect cumulative rewards rh, . . . , rH and q =

∑H
u=h ru

• Then E[q] = E[
∑H
u=h ru] = q

π(s,a)

• |q| = |
∑H
u=h ru| 6 H

H1



Policy evaluation (extrapolation)

• Performm rollouts
• Start from state (s,a) in proportion to optimal design ρ
• Collect the data:

(s1,a1,q1), . . . , (sm,am,qm)

• Compute least-squares estimate

θ̂ = argmin
θ∈Rd

1

2

m∑
t=1

(〈θ,φ(st,at)〉− qt)2 q̂π(s,a) = 〈θ̂,φ(s,a)〉

• With probability at least 1− δ, for all s,a ∈ S × A

|qπ(s,a) − q̂π(s,a)| = |〈φ(s,a), θ? − θ̂〉|

6 β

√
d

m
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Policy evaluation (summary)

• Given a policy π andmH queries to the generative model we can find
an estimator q̂π of qπ such that

max
s,a∈S×A

|qπ(s,a) − q̂π(s,a)| 6 cnstdH

√
log(1/δ)

m

• Equivalently, with

n >
cnstd2H3 log(1/δ)

ε2

queries to the generative model we have an estimator q̂π of qπ such
that

‖qπ − q̂π‖∞ , max
s,a∈S×A

|qπ(s,a) − q̂π(s,a)| 6 ε



Least squares policy iteration

Start with arbitrary policy πH+1

for h = H to 1

- Use policy evaluation and

n =
cnstd2H5 log(H/δ)

ε2

queries to find ‖q̂πh+1 − qπh+1‖∞ 6 ε/H

- Update policy πh(s) =

{
πh+1(s) if s /∈ Sh
argmaxa∈A q̂

πh+1(s,a) otherwise

Theorem 8 With probability at least 1− δ, vπH(s1) − v?(s1) 6 2ε

Corollary 9 With a generative model and qπ-realisable linear function
approximation, sample complexity is at most

cnstd2H6 log(H/δ)

ε2



Analysis

• Same idea as backwards induction
• All policies are optimal on the last layer:

vπH+1(s) = v?(s) for s ∈ SH+1

• We will prove by induction that

vπh(s) > v∗(s) −
2ε(H+ 1− h)

H
for all s ∈ ∪u>hSu



Analysis

For s ∈ Sh

πh(s) = argmax
a∈A

q̂h+1(s,a)

Hence

qπh+1(s,πh(s))

> q̂πh+1(s,πh(s)) −
ε

H
(concentration)

= max
a
q̂πh+1(s,a) −

ε

H
(def of πh)

> max
a
qπh+1(s,a) −

2ε

H
(concentration)

= max
a
r(s,a) +

∑
s ′∈Sh+1

P (s ′|s,a)vπh+1(s ′) −
2ε

H

> max
a
r(s,a) +

∑
s ′∈Sh+1

P (s ′|s,a)v∗(s ′) −
2ε

H
−

2ε(H− h)

H

= v∗(s) −
2ε(H+ 1− h)

H
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Misspecification

What happens if the q-values are only nearly linear
Assumption 2 For all π there exists a θ such that

|qπ(s,a) − 〈φ(s,a), θ〉| 6 ρ for all s,a

Estimating qπ(s,a) using least squares leads to

|q̂π(s,a) − qπ(s,a)| 6 cnstdH

√
log(1/δ)

#rollouts
+ ρ
√
d

Repeating the analysis before

vπ(s) > v∗(s) − cnstdH3

√
log(1/δ)

#queries
− 2ρH

√
d

Lower bound huge price for beating the ρH
√
d barrier



Johnson-Lindenstraus Lemma

Lemma 10 There exists a set A ⊂ Rd of size k such that
1. ‖a‖ = 1 for all a ∈ A

2. |〈a,b〉| 6
√
8 log(k)/(d− 1) , γ for all a,b ∈ A with a 6= b

a / = # [1lb .li ]
a ,b~U1sᵈ " )

= ? # (bi ]

Ella .BY _b =dElbi ]

= # [ bi] weak

Hence ☒ [ eaibs] -_ '

d-

* [Kalb>1)≈d
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Johnson-Lindenstraus Lemma

Lemma 11 There exists a set A ⊂ Rd of size k such that
1. ‖a‖ = 1 for all a ∈ A

2. |〈a,b〉| 6
√
8 log(k)/(d− 1) , γ for all a,b ∈ A with a 6= b

Proof of lower bound

• Construct a needle-in-a-haystack
• H = 1 and A is from Lemma 11
• φ(s1,a) = a for all a
• Let a? ∈ A and

q(s1,a) = r(s1,a) =

{
ε/γ if a = a?

0 otherwise

• Sample complexity to find ε/γ-optimal action is at least k
• q is ε-close to linear with θ? = ε/γa?

• 〈a?, ε/γa?〉 = ε/γ and |〈a, ε/γa?〉| 6 ε
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Exercise

Before we assumed that q-values are nearly linear

Alternative

Assumption 3 There is a given function φ : S → Rd

such that for π there exists a θ such that

vπ(s) = 〈φ(s), θ〉

Exercise 9 What sample complexity can you achieve
under Assumption 3



Local planning

• Using the generative model is simple and statistically efficient
• Computationally hopeless when S is big
• Finding the optimal design and extending using least-squares is

impossible
• If you only care about local planning then more sophisticated

algorithms can find a policy π such that

vπ(s1) > v
?(s1) − ε

with polynomial sample complexity [Hao et al., 2022]

High level idea
Explore using approximately optimal design on set of observed states so
far

Add states to the optimal design as necessary



Online setting

Not known if polynomial sample complexity is possible
with only linear qπ functions

Linear MDPs

(S ,A ,P , r) with feature map φ : S × A → Rd is linear if
• There exists a θ such that r(s,a) = 〈φ(s,a), θ〉
• There exists a signed measure µ : S → Rd such that

P (s ′|s,a) = 〈φ(s,a),µ(s ′)〉

Learning µ is hopeless
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Why are linear MDPs learnable?

P (s ′|s,a) = 〈φ(s,a),µ(s ′)〉

Key point Never need to learn µ
All our algorithms need to learn is the Bellman operator

r(s,a) +
∑
s ′∈S

P (s ′|s,a)v(s ′) = 〈φ(s,a), θ〉+ φ(s,a)>
∑
s ′∈S

µ(s ′)v(s ′)

Right-hand side only depends on (s,a) via φ(s,a)



Estimating expectations

Some algorithm interacts with the MDP (online model)
collecting data

D = (su,au, ru, s
′
u)
m
u=1

Let v : S → [0,H]

Want to estimate from data

r(s,a) +
∑
s ′∈S

P (s ′|s,a)f(s ′) = 〈φ(s,a), θ〉+ φ(s,a)>
∑
s ′∈S

µ(s ′)v(s ′)

Care about value of LHS for all (s,a)



Estimating expectations

D = (su,au, ru, s
′
u)
m
u=1

r(s,a) +
∑
s ′∈S

P (s ′|s,a)v(s ′) = φ(s,a)>θ+ φ(s,a)>
∑
s ′∈S

µ(s ′)v(s ′)

, 〈φ(s,a),wv〉

Estimate with least squares

ŵv = argmin
w∈Rd

m∑
u=1

(〈φ(su,au),w〉− ru − v(s ′u))
2

Makes sense because

E[ru + v(s ′u)] = r(su,au) +
∑
s ′∈S

P (s ′|su,au)v(s
′) = 〈φ(su,au),wv〉



Estimating expectations

G =
∑m

u=1φ(su,au)φ(su,au)
>

ŵv = argmin
w∈Rd

m∑
u=1

(〈φ(su,au),w〉− ru − v(s ′u))2

= G−1
m∑
u=1

φ(su,au)[ru + v(s
′
u)]

(almost) Usual story in terms of the error

|〈φ(s,a), ŵv −wv〉|
whp

. H‖φ(s,a)‖G−1

√
d+ log(1/δ)



UCB-VI for Linear MDPs [Jin et al., 2020]

• Use data to construct optimistic q-values by
backwards induction
• q̃H+1(s,a) = 0 and for h = H to 1

q̃h(s,a) = φ(s,a)
>G−1

m∑
u=1

φ(su,au) [ru + ṽh+1(s
′
u)]

+ β‖φ(s,a)‖G−1

bonus

ṽh+1(s) = maxa q̃h+1(s,a)

• Act greedily: for h = 1 to H

ah = argmax
a∈A

q̃h(sh,a) and observe sh+1
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UCB-VI for Linear MDPs [Jin et al., 2020]

• Use data to construct optimistic q-values by
backwards induction
• q̃H+1(s,a) = 0 and for h = H to 1

q̃h(s,a) = φ(s,a)
>G−1

m∑
u=1

φ(su,au) [ru + ṽh+1(s
′
u)]

+ β‖φ(s,a)‖G−1

bonus

ṽh+1(s) = maxa q̃h+1(s,a)

• Act greedily: for h = 1 to H

ah = argmax
a∈A

q̃h(sh,a) and observe sh+1



Optimism

Need to find large enough β that the algorithm is
optimistic

q̃h(s,a) = φ(s,a)
>G−1

m∑
u=1

φ(su,au) [ru + ṽh+1(s
′
u)]

+ β‖φ(s,a)‖G−1

bonus

ṽh+1(s) = maxa q̃h+1(s,a)

Caveat ṽh+1 is not independent of the data



Where did we get?

• We have data fromm interactions
• We can use it estimate (s,a) 7→ r(s,a) +

∑
s ′∈S P (s ′|s,a)v(s ′)

• With probability 1− δ,

|〈φ(s,a), ŵv −wv〉| . H‖φ(s,a)‖G−1

√
d+ log(1/δ)

• We want this to hold for all possible ṽh functions

ṽh ∈
{
s 7→ max

a
〈φ(s,a),w〉+

√
φ(s,a)>Wφ(s,a) : w ∈ Rd,W ∈ Rd×d

}
• How many functions are there of this form?∞
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Covering numbers and union bound

V =

{
s 7→ max

a
〈φ(s,a),w〉+

√
φ(s,a)>Wφ(s,a) : w ∈ Rd,W ∈ Rd×d

}
Covering number argument. Effective number of functions of this form is

N =

(
1

ε

)d2

By a union bound, with probability at least 1− δ for all v ∈ V

〈φ(s,a), ŵv −wv〉 . ‖φ(s,a)‖G−1H
√
d+ log(N/δ) , β‖φ(s,a)‖G−1



Optimism

Prove by induction that q̃h(s,a) > q?(s,a)
Start with q̃H+1(s,a) = 0 (ṽh(s) = maxa q̃h(s,a))

q̃h(s,a) = φ(s,a)
>G−1

m∑
u=1

φ(su,au)
[
ru + ṽh+1(s

′
u)
]
+ β‖φ(s,a)‖G−1

= φ(s,a)>ŵṽh+1
+ β‖φ(s,a)‖G−1

> φ(s,a)>wṽh+1

= r(s,a) +
∑
s ′∈S

P (s ′|s,a)ṽh+1(s
′)

> r(s,a) +
∑
s ′∈S

P (s ′|s,a)v?(s ′) = q?(s,a)



Bellman operator on q-values

• Let q : S × A → R

• Abbreviate v(s) = maxa∈A q(s,a)

• Define T : RS×A → RS×A by

(T q)(s,a) = r(s,a) +
∑
s ′∈S

P (s ′|s,a)v(s ′)

• Note: T depends on the dynamics/rewards of the (unknown) MDP
• We write πq for the greedy policy with respect to q

πq(s) = argmax
a∈A

q(s,a)



Policy loss decomposition

Proposition 3 Let q : S ×A → R, v(s) = maxa q(s,a) and π = πq. Then

v(s1) − v
π(s1) = Eπ

[
H∑
h=1

(q− T q)(sh,ah)

]
Proof

q(s1,π(s1)) − v
π(s1)

= (q− T q)(s1,π(s1)) + (T q)(s1,π(s1)) − qπ(s1,π(s1))

= (q− T q)(s1,π(s1)) + T (q− qπ)(s1,π(s1))

= (q− T q)(s1,π(s1)) +
∑
s2

P(s2|s1,π(s1))(q(s2,π(s2)) − q
π(s2,π(s2)))

= · · ·

= Eπ

[
H∑
h=1

(q− T q)(sh,π(sh))

]



From optimism to regret

Regn = E

[
n∑
t=1

v?(s1) − v
πt(s1)

]

. E

[
n∑
t=1

ṽt(s1) − v
πt(s1)

]
(Optimism)

= E

[
n∑
t=1

H∑
h=1

(q̃t − T q̃t)(sth,a
t
h)

]
(Prop 3)



Bellman error

Remember

q̃t(s,a) = φ(s,a)
>G−1

t−1

m∑
u=1

φ(su,au)[ru + ṽt(s
′
u)] + β‖φ(s,a)‖G−1

t−1

T q̃t(s,a) = r(s,a) +
∑
s ′∈S

P (s ′|s,a)ṽt(s
′)

Concentration

q̃t(s,a) − T q̃t(s,a) 6 2β‖φ(s,a)‖G−1
t−1



Back to the regret

Regn 6 E

[
n∑
t=1

H∑
h=1

(q̃t − T q̃t)(sth,a
t
h)

]

6 2βE

[
n∑
t=1

H∑
h=1

‖φ(sth,ath)‖G−1
t−1

]

6 2β

√√√√nHE[ n∑
t=1

H∑
h=1

‖φ(sth,ath)‖2G−1
t−1

]

.
√
d3H4n log(n)

Naive application of elliptical potential lemma

n∑
t=1

H∑
h=1

‖φ(sth,ath)‖2G−1
t−1

. dH log(n)



Back to the regret

Regn 6 E

[
n∑
t=1

H∑
h=1

(q̃t − T q̃t)(sth,a
t
h)

]

6 2βE

[
n∑
t=1

H∑
h=1

‖φ(sth,ath)‖G−1
t−1

]

6 2β

√√√√nHE[ n∑
t=1

H∑
h=1

‖φ(sth,ath)‖2G−1
t−1

]

.
√
d3H4n log(n)

Naive application of elliptical potential lemma

n∑
t=1

H∑
h=1

‖φ(sth,ath)‖2G−1
t−1

. dH log(n)



Back to the regret

Regn 6 E

[
n∑
t=1

H∑
h=1

(q̃t − T q̃t)(sth,a
t
h)

]

6 2βE

[
n∑
t=1

H∑
h=1

‖φ(sth,ath)‖G−1
t−1

]

6 2β

√√√√nHE[ n∑
t=1

H∑
h=1

‖φ(sth,ath)‖2G−1
t−1

]
.
√
d3H4n log(n)

Naive application of elliptical potential lemma

n∑
t=1

H∑
h=1

‖φ(sth,ath)‖2G−1
t−1

. dH log(n)



Misspecification

• Same algorithm is robust to misspecification

‖P (·|s,a) − 〈φ(s,a),µ(·)〉‖TV 6 ε|r(s,a) − 〈φ(s,a), θ〉| 6 ε

• Additive Õ(εndH) term in the regret



Beyond linearity

Slides available at
https://tor-lattimore.com/downloads/RLTheory.pdf

https://tor-lattimore.com/downloads/RLTheory.pdf


Nonlinear function approximation

• Previous we assumed that for all π there exists a θ such that

qπ(s,a) = 〈φ(s,a), θ〉

• Equivalently, for all π, qπ ∈ {(s,a) 7→ 〈φ(s,a), θ〉 : θ ∈ Rd}
• Sample complexity depends on d
• Alternative Assume qπ ∈ F for some abstract function class F
• Somehow bound sample complexity in terms of the structure of F



VC Theory

Complete charactersiation of sample complexity for
binary classification

SampleComplexity(ε) = Θ

(
VC(H ) + log(1/δ)

ε

)

Wow! Good job. What’s the RL version?



Nonlinear function approximation for bandits

Remember bandits

• Learner takes actions a1, . . . ,an in A
• Observes rewards r1, . . . , rn with rt = f(at) + ηt for some f : A → R

• Assume f ∈ F for some known function class F
• Generative model, local planning and fully online are all the same for

bandits

Can we get a regret bound that depends on F ?

Regn = max
a?∈A

E

[
n∑
t=1

f(a?) − f(at)

]
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Can we get a regret bound that depends on F ?

Regn = max
a?∈A

E

[
n∑
t=1

f(a?) − f(at)

]



Eluder dimension (intuition)

• We are going to play optimistically
• Somehow construct confidence set Ft based on data collected
• Optimistic value function is ft = argmaxf∈Ft−1

maxa∈A f(a)

• Play at = argmaxa∈A ft(a)

• Regret

Regn = E

[
n∑
t=1

f(a?) − f(at)

]
(regret def)

. E

[
n∑
t=1

(ft(at) − f(at))

]
(optimism principle)

Eluder dimension
measures how often ft(at) − f(at) can be large
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Confidence bounds for LSE

Least squares estimator of f? after t rounds is

f̂t = argmin
f∈F

t∑
s=1

(rs − f(as))
2

Lemma 12 There exists a constant β2 . log(|F |n) such that

P

(
max

06t6n
‖f̂t − f?‖2t > β2

)
6

1

n
‖f− g‖2t =

t∑
s=1

(f(as) − g(as))
2

Define confidence set Ft = {f ∈ Ft−1 : ‖f̂t − f‖2t 6 β2}

By Lemma 12, P(∃t ∈ [n] : f? /∈ Ft−1) 6 1/n



Confidence bounds

LSE minimises the sum of squared errors by definition

f̂t = argmin
f∈F

t∑
s=1

(rs − f(as))
2

Rearrange some things

0 >
t∑
s=1

(rs − ft(as))
2 −

t∑
s=1

(rs − f?(as))
2

=

t∑
s=1

(f?(as) + ηs − ft(as))
2 −

t∑
s=1

η2s

=

t∑
s=1

(f?(as) − ft(as))
2

want this small

+ 2
t∑
s=1

ηs(f?(as) − ft(as))

noise



CLT things

Last slide

t∑
s=1

(f?(as) − ft(as))
2 6 2

t∑
s=1

ηs(f?(as) − ft(as))

sum of zero-mean random variables

Given fixed f ∈ F . Using V[aX] = a2V[X]

2
t∑
s=1

Vs−1[ηs(f?(as) − f(as))] = 2
t∑
s=1

(f?(as) − f(as))
2

Martingale CLT

2
t∑
s=1

ηs(f?(as) − f(as))
whp

.

√√√√ t∑
s=1

(f?(as) − ft(as))2 log(1/δ)
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2
t∑
s=1

Vs−1[ηs(f?(as) − f(as))] = 2
t∑
s=1

(f?(as) − f(as))
2

Martingale CLT for all f ∈ F

2
t∑
s=1

ηs(f?(as) − f(as))
whp

.

√√√√ t∑
s=1

(f?(as) − ft(as))2 log(|F |/δ)



CLT things

Last slide
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2 6 2
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ηs(f?(as) − ft(as))

sum of zero-mean random variables

Given fixed f ∈ F . Using V[aX] = a2V[X]

2
t∑
s=1

Vs−1[ηs(f?(as) − f(as))] = 2
t∑
s=1

(f?(as) − f(as))
2

Martingale CLT for LSE ft ∈ F

2
t∑
s=1

ηs(f?(as) − ft(as))
whp

.

√√√√ t∑
s=1

(f?(as) − ft(as))2 log(|F |/δ)



Confidence bound

t∑
s=1

(f?(as) − ft(as))
2 6 2

t∑
s=1

ηs(f?(as) − ft(as))

sum of zero-mean random variables

whp

.

√√√√ t∑
s=1

(f?(as) − ft(as))2 log(|F |/δ)

Rearranging

‖f? − ft‖2t ,
t∑
s=1

(f?(as) − ft(as))
2
whp

. log(|F |/δ)



Confidence bound
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Rearranging
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2
whp

. log(|F |/δ)



Eluder dimension

• Let F be a set of functions from A to R

• Eluder dimension is a complexity measure of F

• Given an ε > 0 and sequence a1, . . . ,an in A , we say that a ∈ A is
ε-dependent with respect to (at)

n
t=1 if

∀f,g ∈ F with
n∑
t=1

(f(at) − g(at))
2 6 ε2 , f(a) − g(a) 6 ε

• a is ε-independent with respect to (at)
n
t=1 if it is not ε-dependent

Definition 13 (Russo and Van Roy 2013) The Eluder dimension
dimE(F , ε) of F at level ε > 0 is the largest d such that there exists a
sequence (at)

d
t=1 of ε-independent elements



Theorem 14 Let (at)nt=1 be a sequence in A and (ft)
n
t=1 a sequence in F

and

Ft = Ft−1 ∩ {f ∈ F : ‖f− ft‖2t 6 β2} wt(a) = max
f,g∈Ft

f(a) − g(a)

width of Ft wrt a

Then #{t : wt−1(at) > ε} 6 cnstβ2 dimE(F , ε)/ε2

Proof In round t case 1 : w.tl.at . / ≤ E : do nothing
case 2 : Wtlatl > E :

.

B. I 7 fig c- Ft-, 5. t flat / -9.19+1 > [

2 Ilf -911} ≤ Zllf - It 112+1-21197^+111
B. .

as
I 413,2

i
=> 3- B S.t. E ( flat - 9laÑ≤ E

'

-

AEB

Bm④f 3 Add at to B

M = [4132/[27 buckets 4- at is e- ind . of elements
in

B. Hence at most E-dim items added
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Eluder dimension

Corollary 15 Let (at)nt=1 be a sequence in A and (ft)
n
t=1 be a

sequence in F

Ft = Ft−1 ∩ {f ∈ F : ‖f− ft‖2t 6 β2}

Then with wt(a) = maxf,g∈Ft f(a) − g(a)

n∑
t=1

wt−1(at) 6 nε+ cnst
√
nβ2 dimE(F , ε)



Eluder dimension for bandits

• Let F be a set of functions from A to R and f ∈ F is unknown
• Learner plays actions (at)

n
t=1 observing rewards (rt)

n
t=1

rt = f(at) + ηt

• Regret is Regn = max
a∈A

E

[
n∑
t=1

f(a) − f(at)

]
• Given a confidence set Ft after round t, the algorithm plays

at = argmax
a∈A

max
g∈Ft−1

g(a)



Bounding the regret

Theorem 16 For EluderUCB: Regn .
√
nβ2 dimE(F , 1/n)

Proof Let gt−1 = argmaxg∈Ft−1
maxa∈A g(a)

Regn = E

[
n∑
t=1

f(a?) − f(at)

]

. E

[(
n∑
t=1

gt−1(at) − f(at)

)]
(Optimism)

6 E

[
n∑
t=1

wt−1(at)

]
.
√
n dimE(F , 1/n) log(|F |n) (Corollary 15)



Bounds on the Eluder dimension

Proposition 4 dimE(F , ε) 6 |A | for all ε > 0 and all F
Proof Suppose that a ∈ {a1, . . . ,an}. We claim that a is
ε-dependent on {a1, . . . ,an}

Def. of independence Given an ε > 0 and sequence a1, . . . ,an in A ,
we say that a ∈ A is ε-dependent with respect to (at)

n
t=1 if

∀f,g ∈ F with
n∑
t=1

(f(at) − g(at))
2 6 ε2 , f(a) − g(a) 6 ε

a ∈ {a1, . . . ,an} so[
n∑
t=1

(f(at) − g(at))
2 6 ε2

]
=⇒ [f(a) − g(a) 6 ε]
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Proposition 5 When A ⊂ Rd and F = {f : f(a) = 〈a, θ〉, θ ∈ Rd}, then

dimE(F , ε) = O(d log(1/ε)) for all ε > 0

Proof

Complicated... Elliptical potential... Blah blah
Let dim = dimE(F ,ε). By definition, there exists a sequence (at)

dim
t=1 and (ft,gt)

dim
t=1 such that for

t ∈ [dim],

〈ft − gt,at〉 > ε
t−1∑
s=1

〈ft − gt,as〉2 6 ε2

Hence, withGt = ε2I+
∑t
s=1 asa

>
s ,

ε2(1− ‖at‖2G−1
t

) 6 〈ft − gt,at〉2(1− ‖at‖2G−1
t

)

6 ‖ft − gt‖2Gt
‖at‖2G−1

t
− 〈ft − gt,at〉2‖at‖2G−1

t

= ‖ft − gt‖2Gt−1
‖at‖2G−1

t

6 2ε2‖at‖2G−1
t

Summing: dimε2 6 3ε2
dim∑
t=1

‖at‖2G−1
t

Abbasi-Yadkori et al. [2011]
6 3dε2 log

(
1+

dim

dε2

)



Consequences

• For k-armed bandits: A = {1, . . . ,k} and F = [0, 1]k,

Regn .
√
kn log(|F |n)

• For linear bandits: A ⊂ Rd and F = {a 7→ 〈a, θ〉 : θ ∈ Rd}

Regn .
√
dn log(|F |n)

|F | =∞ in both cases???
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Covering
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Consequences

• For k-armed bandits: A = {1, . . . ,k} and F = [0, 1]k,

Regn .
√
kn log(Coveringn) . k

√
n log(n))

• For linear bandits: A ⊂ Rd and F = {a 7→ 〈a, θ〉 : θ ∈ Rd}

Regn .
√
dn log(Coveringn) . d

√
n log(n)



Notes on Eluder dimension

• Definitions are made for optimistic algorithms
• Not a real (?) dimension – no lower bounds
• Relatively simple to work with
• further information: Li et al. [2021]
• Alternative information-theoretic complexity measures
• RL/Bandits: Foster et al. [2021]
• Adversarial partial monitoring: L [2022]



Global Optimism based on Local Fitting [Jin et al., 2021]

• Online RL setting
• Nonlinear function approximation
• Subsumes many existing frameworks on function approximation
• Statistically efficient
• Not computationally efficient



Assumptions

Algorithm uses a function approximation class F ⊂ [0,H]S×A

Remember, the Bellman operator T : RS×A → RS×A is

(T f)(s,a) = r(s,a) +
∑
s ′∈S

P (s ′|s,a)f(s ′)

with f(s) = maxa∈A f(s,a)

Assumption 4 (Realisability) q? ∈ F

Assumption 5 (Closedness) T f ∈ F for all f ∈ F



Bellman operator on q-values

• Let f : S × A → R

• Abbreviate f(s) = maxa∈A f(s,a)

• Define T : RS×A → RS×A by

(T f)(s,a) = r(s,a) +
∑
s ′∈S

P (s ′|s,a)f(s ′)

• Note: T depends on the dynamics/rewards of the (unknown) MDP
• We write πf for the greedy policy with respect to f

πf(s) = argmax
a∈A

f(s,a)



Policy loss decomposition

Proposition 6 Let f : S × A → R, f(s) = maxa q(s,a) and π = πf. Then

f(s1) − v
π(s1) = Eπ

[
H∑
h=1

(f− T f)(sh,ah)

]



GOLF Algorithm Intuition

• Maintain confidence set Ft containing q? with high probability
• Let ft ∈ Ft−1 be the optimistic q-function

ft = argmax
f∈Ft−1

f(s1)

• Play optimistically: πt(s) = argmaxa∈A ft(s,a)

• By optimism and policy loss decomposition

v?(s1) − v
πt(s1)

regret

6 ft(s1) − v
πt(s1) = Eπt

[
H∑
h=1

(ft − T ft)(sh,ah)

]

Acting greedily with respect to an optimistic q-value function that nearly
satisfies the Bellman equation is nearly optimal

Need a way to eliminate functions f in the confidence set for which the
Bellman error is large

Problem Bellman operator depends on unknown dynamics
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GOLF Algorithm Intuition

Suppose s ′ ∼ P (s,a) and r ∼ R (s,a)

E[r+ f(s ′)] = (T f)(s,a) if T f=f
= f(s,a)

If T f− f is large∑
s,a,r,s ′∈D

(
f(s,a) − r− f(s ′)

)2 � ∑
s,a,r,s ′∈D

((T f)
∈F

(s,a) − r− f(s ′))2

If T f = f∑
s,a,r,s ′∈D

(f(s,a)

(T f)(s,a)

−r− f(s ′))2
whp

.
∑

s,a,r,s ′∈D

(
g(s,a) − r− f(s ′)

)2
+ β2



GOLF Algorithm

1. Set D = ∅ and C0 = F

2. for episode t = 1, 2 . . .

3. Choose policy πt = πft where

ft = argmax
f∈Ct−1

f(s1)

4. Run πt for one episode and add data to D

5. Update confidence set:

Ct = {f ∈ Ck−1 : LD (f, f) 6 inf
g∈F

LD (g, f) + β
2}

where LD (g, f) =
∑
s,a,r,s ′∈D (g(s,a) − r− f(s ′))2



Concentration analysis

Given D ⊂ S × A × [0, 1]× S collected by some policy and

CD =

{
f ∈ F : LD (f) 6 inf

g∈F
LD (g, f) + β

2

}
β2 = cnst log

(
|F |

δ

)
where LD (g, f) =

∑
s,a,r,s ′∈D [g(s,a) − r− f(s

′)]2 and LD (f) = LD (f, f)

Proposition 7 If f = T f, then P(f ∈ CD ) > 1− δ

Proof Let g ∈ F . By concentration of measure (next slide), with
probability at least 1− δ/|F |

L(f) − L(g, f) 6 −
∑

s,a,r,s′∈D

(f− g)2(s,a) + cnst

√√√√ ∑
s,a,r,s′∈D

(f− g)2(s,a) log

(
|F |

δ

)
+ log

(
|F |

δ

)
6 sup
x∈R

[
−x2 + cnstx

√
log

(
|F |

δ

)
+ cnst log

(
|F |

δ

)]

6 cnst log

(
|F |

δ

)
= β2

Result follows by union bound (and covering number argument)
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Concentration analysis (cont.)

LD (f) − LD (g, f) =
m∑
i=1

[f(si,ai) − ri − f(s
′
i)]

2 − [g(si,ai) − ri − f(s
′
i)]

2

Xi

Given r ∼ R (s,a) and s ′ ∼ P (s,a),

X = E
[(
f(s,a) − (r+ f(s ′))

)2
−
(
g(s,a) − (r+ f(s ′))

)2]
= f(s,a)2 − g(s,a)2 + 2E[r+ f(s ′)](g(s,a) − f(s,a))

= f(s,a)2 − g(s,a)2 + 2(T f)(s,a))(g(s,a) − f(s,a))

= f(s,a)2 − g(s,a)2 + 2f(s,a)(g(s,a) − f(s,a))

= −(f(s,a) − g(s,a))2

Similar calculation: V[X] 6 cnst(f(s,a) − g(s,a))2

By martingale Bernstein inequality
m∑
i=1

Xi 6
m∑
i=1

E[Xi] + cnst

√√√√ m∑
i=1

V[Xi] log

(
1

δ

)
+ cnst log

(
1

δ

)



Concentration analysis (cont.)
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Xi
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By martingale Bernstein inequality
m∑
i=1

Xi >
m∑
i=1

E[Xi] − cnst

√√√√ m∑
i=1

V[Xi] log

(
1

δ

)
− cnst log

(
1

δ

)



Concentration analysis (summary)

We showed that with probability at least 1− δ that any f with T f = f

f ∈ Ct

q? in Ct for all episodes t with high probability

LD (f) − LD (T f, f)

>
∑

s,a,r,s ′∈D

((f− T f)(s,a))2 −

√ ∑
s,a,r,s ′∈D

((f− T f)(s,a))2 log
1

δ
− log

1

δ

LDt(f) − LDt(T f, f) > β
2 if

t∑
u=1

Eπu

[
H∑
h=1

((f− T f)(suh,a
u
h))

2

]
> cnstβ2



Regret analysis

1. By optimism

Regn =

n∑
t=1

v?(s1) − v
πt(s1)

whp
6

n∑
t=1

ft(s1,πft(s1)) − v
πt(s1) (Optimism)

=

n∑
t=1

H∑
h=1

Eπt [(f
t − T ft)(sh,ah)] (Prop. 3)

2. Since ft ∈ Ft−1

t−1∑
u=1

Eπu

[
H∑
h=1

((ft − T ft)(suh,a
u
h))

2

]
6 cnstβ2



Bellman Eluder dimension

Regn 6
n∑
t=1

H∑
h=1

Eπt [(f
t − T ft)(sh,ah)]

For all t
t−1∑
u=1

Eπu

[
H∑
h=1

((ft − T ft)(suh,a
u
h))

2

]
6 cnstβ2

Bellman Eluder dimension
Let E = {Eπf : f ∈ F }

Given a sequence E1, . . . , Em in E . We say E ∈ E is ε-dependent if for all
f− T f,

m∑
u=1

Eu

[
H∑
h=1

((f− F )(sh,ah))
2

]
6 ε2 ⇒ E

[
H∑
h=1

((f− F ))(sh,ah)

]
6 ε

The Bellman Eluder dimension dimBE(F , ε) is the longest sequence of
ε-independent expectation operators
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Final result and applications

Theorem 17 Regn = Õ(H
√
dimBE(F , ε)nβ2)

What has low Bellman eluder dimension?

• Tabular (first lecture)
• Linear MDPs (last lecture)
• Generalised linear MDPs
• Kernel MDPs
• All problems with low Bellman rank
• All problems with low Eluder dimension



Comparison to other complexity measures

• Linear MDPs
• Eluder dimension [Osband and Van Roy, 2014]
• Bellman rank [Jiang et al., 2017]
• Witness rank [Sun et al., 2019]
• Bilinear rank [Du et al., 2021]



Negative results

• Last lecture we showed that you can learn with a generative model
when for all π there exists a θ such that qπ(s,a) = 〈φ(s,a), θ〉

• What if only the optimal policies are linearly realisable?
q?(s,a) = 〈φ(s,a), θ〉

• Polynomial sample complexity not possible



TensorPlan [Weisz et al., 2021]

• Finite horizon setting

• Local access planning

• Linear features ϕ : S → Rd

• Only assume that value function of optimal policy π? is realisable

• There exists a θ such that

vπ
?
(s) = 〈ϕ(s), θ〉 for all s ∈ S

• Number of samples needed for ε-accuracy is

poly((dH/ε)|A |)



Other (not covered) topics

• Information-theoretic complexity measures
• Batch RL
• RL Theory website https://rltheory.github.io/

• Draft RL Theory book by (Alekh Agarwal, Nan Jiang, Sham Kakade
and Wen Sun): https://rltheorybook.github.io/

https://rltheory.github.io/
https://rltheorybook.github.io/
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