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Preface

This book is about zeroth-order convex optimisation. That is approximately
solving

arg min
𝑥∈𝐾

𝑓 (𝑥) ,

where 𝑓 : 𝐾 → R𝑑 is convex, 𝐾 ⊂ R𝑑 is a convex body and the learning
system can only observe noisy function values and not gradients or higher-order
derivatives. The focus is on finite-time minimax bounds on the regret or sample
complexity that is standard in the multi-armed bandit literature. The book
covers all the algorithmic ideas, including gradient-descent, barrier methods,
cutting plane methods, exponential weights, information-theoretic arguments
and second-order methods. One chapter is devoted to bandit submodular
minimisation and its relation to bandit convex optimisation via the Lovász
extension. The book is more-or-less self-contained, though a little background
in optimisation and online learning will go a long way. The content is almost
entirely theoretical.
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wonderful collaborators, especially Alireza Bakhtiari, Hidde Fokkema, András
György, Dirk van der Hoeven, Jack Mayo and Csaba Szepesvári. For at least the
second time I am in debt to Marcus Hutter, who read almost the entire book and
made a huge number of thoughtful suggestions.
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1
Introduction and problem statement

This book is about approximately solving problems of the form

arg min
𝑥∈𝐾

𝑓 (𝑥) , (1.1)

where 𝐾 is a convex body in R𝑑 (convex, compact and non-empty interior)
and 𝑓 : 𝐾 → R is a convex function. Problems of this kind are ubiquitous in
machine learning, operations research, economics and beyond. The difficulty
of this problem depends on many factors. For example, the dimension and
smoothness properties of 𝑓 . Most important, however, is the representation of
the function 𝑓 and constraint set 𝐾. Our focus is on zeroth-order stochastic
optimisation where you can query 𝑓 at any 𝑥 ∈ 𝐾 and observe 𝑦 = 𝑓 (𝑥) + noise.
By contrast, the vast majority of the literature on mathematical programming
allows both the value of 𝑓 and its derivatives to be computed at any 𝑥 ∈ 𝐾.
Sometimes exactly or with additive noise. This is not a book about applications,
but for the sake of inspiration and motivation we list a few situations where
zeroth-order optimisation is a natural fit.

◦ Real-world experiments: A chef wants to optimise the temperature and
baking time when baking soufflé. The constraint set 𝐾 is some reasonable
subset of the possible temperature/time pairings and 𝑓 (𝑥) is the expected
negative quality of the finished product. Noise arises here from exogenous
factors, such as unintentional variation in recipe preparation.

◦ Adversarial attacks in machine learning: A company releases an image
recognition system. Can you find an image that looks to the human eye
like a stop sign but is classified by the system as something else? Unless
the company has released the code/weights, you can only interact with a
black-box function𝐶 that accepts images as input and returns a classification,
possibly at some cost. A simple idea is to take an image 𝑥◦ and let 𝐾 be
the set of images that are close to 𝑥◦ with respect to some metric. Then

1



2 Introduction and problem statement

approximately solve the following optimisation problem:

arg min
𝑥∈𝐾

𝑆(𝐶 (𝑥), 𝐶 (𝑥◦)) ,

where 𝑆(𝐶 (𝑥), 𝐶 (𝑦)) is some measure of similarity between the classifica-
tions 𝐶 (𝑥) and 𝐶 (𝑦). That is, to find an image 𝑥 that is close to 𝑥◦ but where
the similarity between the outputs of the classifier is low.

◦ Reinforcement learning and control: There are many ways to do reinforce-
ment learning. Suppose that 𝜋𝜃 is a policy parameterised by 𝜃 ∈ 𝐾 and 𝑓 (𝜃)
is the (expected) loss when implementing policy 𝜋𝜃 . Then solving (1.1)
corresponds to finding the optimal policy in {𝜋𝜃 : 𝜃 ∈ 𝐾}.

◦ Hyperparameter tuning: Most machine learning systems have a range of
parameters. For example, the width/depth/structure of a neural network
or learning rates (schedules) for the training algorithm. You may want to
automate the process of finding the best architecture and training parameters.
The loss in this case could be the performance of the resulting system after
training. So computing 𝑓 (𝑥) requires running an entire training process,
which is enormously expensive and possibly random. Generally speaking 𝑓

cannot be differentiated.
◦ Dynamic pricing: In dynamic pricing a retailer interacts sequentially with

an environment. Customers arrive in the system and the retailer suggests a
price 𝑋𝑡 ∈ 𝐾 ⊂ R. The loss 𝑓 (𝑋𝑡 ) is the (expected) negative profit. When
the price is too high the customer will not purchase and some loss is incurred
(operating costs). On the other hand, when the price is too low there is also
a loss. The function 𝑓 is not known a-priori to the retailer and variability in
customers introduces noise in the observations.

Pr
of
it

Price

The last application reveals another con-
sideration. Approximately minimising
the loss 𝑓 as in (1.1) is not the only
possible objective. In dynamic pricing
every query to the loss function (deci-
sion) entails an actual cost (or profit). In
this situation a more natural objective is
to minimise the cumulative loss over all
interactions. Most of this book is about
this objective, which is most often seen in the literature on multi-armed bandits.
As we shall soon see, an algorithm that approximately minimises the cumulative
loss can be used to solve the optimisation problem (1.1), but the reverse does not
hold. Note that many practical problems are not convex. Nevertheless, enormous
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practical experience with first-order methods suggests this is less of a problem
than it seems. The same may be true in the zeroth-order setting.

Many of the proposed applications are aspirational rather than truly practical.
Automatic hyperparameter tuning is used everywhere, but the algorithms
employed are usually based on other methods, such as Gaussian process bandits.
Presumably the reason for this is because convex bandit algorithms are not
quite ready for the big stage yet. The simple methods converge slowly, while the
complicated methods are challenging to implement and tune. Hopefully in the
coming years new and better algorithms will be developed.

1.1 Prerequisites

Most readers will benefit from a reasonable knowledge of online learning
(Cesa-Bianchi and Lugosi, 2006; Hazan, 2016; Orabona, 2019) and bandits
(Bubeck and Cesa-Bianchi, 2012; Slivkins, 2019; Lattimore and Szepesvári,
2020). We use some theory from interior point methods, which you could refresh
by reading the lecture notes by Nemirovski (1996). None of this is essential,
however, if you are prepared to take a few results on faith. Similarly, we use
a few simple results from concentration of measure. Our reference was the
book by Vershynin (2018) but Boucheron et al. (2013) also covers the material
needed. We do use martingale versions of these results, which sadly do not
appear in these books but are more or less trivial extensions. The standard
reference for convex analysis is the book by Rockafellar (1970), which we refer
to occasionally. No deep results are needed, however. Similarly, we make use
of certain elementary results in convex geometry. Our reference for these is
mostly the book by Artstein-Avidan et al. (2015). The symbol ( ) on a proof,
section or chapter means that you could (should?) skip this part on your first
pass. The book contains a number of exercises, which are assigned a difficulty
based on a star rating. Problems with one ⋆ are straightforward, requiring
limited ingenuity or mathematical sophistication. Problems with two ⋆⋆ are
moderately difficult and may require considerable ingenuity. Problems with
three ⋆⋆⋆ will probably take several days of work. Problems marked with �

may require extensive literature searches and problems marked with ? have not
been solved yet. All difficulty assessments are subjective estimates only.
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1.2 Bandit convex optimisation

Let 𝐾 ⊂ R𝑑 be convex and 𝑓1, . . . , 𝑓𝑛 : 𝐾 → R be an unknown sequence of
convex functions. A learner interacts with the environment over 𝑛 rounds. In
round 𝑡 the learner chooses an action 𝑋𝑡 ∈ 𝐾. They then observe a noisy loss
𝑌𝑡 = 𝑓𝑡 (𝑋𝑡 ) + 𝜀𝑡 , where (𝜀𝑡 )𝑛𝑡=1 is a sequence of noise random variables. The
precise conditions on the noise are given in (1.2) below, but for now you could
think of the noise as a sequence of independent standard Gaussian random
variables. The learner’s decision 𝑋𝑡 is allowed to depend on an exogenous source
of randomness and the data observed already, which is 𝑋1, 𝑌1, . . . , 𝑋𝑡−1, 𝑌𝑡−1.
The main performance metric in this book is the regret, which is

Reg𝑛 = sup
𝑥∈𝐾

𝑛∑︁
𝑡=1

( 𝑓𝑡 (𝑋𝑡 ) − 𝑓𝑡 (𝑥)) .

The regret is a random variable with the randomness coming from both the noise
and the learner’s decisions. Normally the regret will be bounded in expectation
or with high probability, depending on what is most convenient. Of course, the
regret also depends on the loss functions. In general we will try to argue that our
algorithms have small regret for any convex losses within some class. Stronger
assumptions (smaller classes) lead to stronger results and/or simpler and/or
more efficient algorithms. The following definition and notation is sufficient for
our purposes.

Definition 1.1 Let ℱ be the space of convex functions from 𝐾 to R and with
∥·∥ the standard euclidean norm define the following properties of a function
𝑓 ∈ ℱ:

Prop (b) 𝑓 is bounded: 𝑓 (𝑥) ∈ [0, 1] for all 𝑥 ∈ 𝐾 .
Prop (l) 𝑓 is Lipschitz: 𝑓 (𝑥) − 𝑓 (𝑦) ≤ ∥𝑥 − 𝑦∥ for all 𝑥, 𝑦 ∈ 𝐾 .
Prop (sm) 𝑓 is 𝛽-smooth: 𝑓 (𝑥) − 𝛽

2 ∥𝑥∥2 is concave on 𝐾 .
Prop (sc) 𝑓 is 𝛼-strongly convex: 𝑓 (𝑥) − 𝛼

2 ∥𝑥∥2 is convex on 𝐾 .
Prop (lin) 𝑓 is linear: 𝑓 (𝑥) = 𝑥⊤𝑏 + 𝑐.
Prop (quad) 𝑓 is quadratic: 𝑓 (𝑥) = 𝑥⊤𝐴𝑥 + 𝑥⊤𝑏 + 𝑐.

We use the property symbols to define subsets of ℱ. For example:

◦ ℱb = { 𝑓 ∈ ℱ : 𝑓 (𝑥) ∈ [0, 1] for all 𝑥 ∈ 𝐾}.
◦ ℱb,sm,sc is the set of bounded convex functions that are smooth and strongly

convex.

When smoothness and strong convexity are involved, our bounds will depend on
the parameters 𝛼 > 0 and 0 ≤ 𝛽 < ∞, which we assume are known constants.
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1.2.1 Constraint set
The set 𝐾 is called the constraint set and its geometry also plays a role in the
hardness of bandit convex optimisation. We make the following assumption
throughout the entire book:

Assumption 1.2 The constraint set 𝐾 ⊂ R𝑑 is a convex body, which means
that:

(1) 𝐾 is convex; and
(2) 𝐾 has a nonempty interior; and
(3) 𝐾 is compact.

Only convexity and the boundedness part of compactness are really essential
for most results. Every nonempty convex set has a nonempty interior when
embedded in a suitable affine subset of R𝑑 . Properties of 𝐾 that influence
the regret of various algorithms include its diameter and how well-rounded
it is (Section 3.6). Mathematically speaking nothing more is needed from
the constraint set. Computationally the representation of 𝐾 is very important.
Standard options are as a polytope, convex hull of a point cloud or given by a
separation/membership oracle. Matters involving computation and the constraint
set are discussed in Section 3.9.

Remark 1.3 You may be interested to know what happens when 𝐾 is not
bounded. For example, when 𝐾 = R𝑑 . We discuss this and other possible
assumptions on the constraint set in Note 1.ii at the end of the chapter.

1.2.2 Noise
Our assumption on the noise is that the sequence (𝜀𝑡 )𝑛𝑡=1 is conditionally
subgaussian. By this we mean that:

Assumption 1.4 The noise random variables 𝜀1, . . . , 𝜀𝑛 are conditionally
subgaussian:

E [𝜀𝑡 | 𝑋1, 𝑌1, . . . , 𝑋𝑡−1, 𝑌𝑡−1, 𝑋𝑡 ] = 0 ; and
E

[
exp(𝜀2

𝑡 ) | 𝑋1, 𝑌1, . . . , 𝑋𝑡−1, 𝑌𝑡−1, 𝑋𝑡
]
≤ 2 . (1.2)

Assumption 1.4 is considered global and will not be referred to subsequently.
Note that (1.2) together with the fact that 𝑥2 ≤ exp(𝑥2) − 1 for all 𝑥 guarantees
that the conditional variance of 𝜀𝑡 satisfies

E[𝜀2
𝑡 |𝑋1, 𝑌1, . . . , 𝑋𝑡−1, 𝑌𝑡−1, 𝑋𝑡 ] ≤ 1 . (1.3)

This definition of subgaussianity is based on the Orlicz norm definitions. We
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give a brief summary in Appendix B or you can read the wonderful book by
Vershynin (2018). Sometimes we work in the noise-free setting where 𝜀𝑡 = 0.
The assumption of subgaussian noise is rather standard in the bandit literature.
The Gaussian distribution N (0, 3/8) is subgaussian. And so is any distribution
that is suitably bounded almost surely. All that is really needed is a suitable
concentration of measure phenomenon and hence all results in this book could
be generalised to considerably larger classes of noise distribution without too
much effort. We keep things simple, however.

1.2.3 Adversarial and stochastic convex bandits
We already outlined some of the assumptions on the function class to which the
losses belong. The other major classification is whether or not the problem is
adversarial or stochastic.

Adversarial bandit convex optimisation In the adversarial setting the most
common assumption is that the noise 𝜀𝑡 = 0 while the functions 𝑓1, . . . , 𝑓𝑛 are
chosen in an arbitrary way by the adversary. Sometimes the adversary is allowed
to choose 𝑓𝑡 at the same time as the learner chooses 𝑋𝑡 , in which case we say
the adversary is non-oblivious. Perhaps more commonly, however, the adversary
is obliged to choose all loss functions 𝑓1, . . . , 𝑓𝑛 before the interaction starts.
Adversaries of this kind are called oblivious. For our purposes it is convenient
to allow nonzero noise even in the adversarial case. This is sometimes essential
in applications. For example, in bandit submodular minimisation (Chapter 13).
And besides, it feels natural that the adversarial setting should generalise the
stochastic one.

Remark 1.5 In the adversarial setting you might be tempted to combine the
noise and losses by defining the loss function to be 𝑓𝑡 + 𝜀𝑡 . But this would
prevent the noise distribution from depending on the action of the learner, which
is permitted by Assumption 1.4 and is essential in certain applications like
submodular bandits (Chapter 13).

Stochastic bandit convex optimisation The stochastic setting is more classical.
The loss function is now constant over time: 𝑓𝑡 = 𝑓 for all rounds 𝑡 and unknown
𝑓 . The standard performance metric in bandit problems is the regret, but in the
stochastic setting it also makes sense to consider the simple regret. At the end
of the interaction the learner is expected to output one last point 𝑋 ∈ 𝐾 and the
simple regret is

sReg𝑛 = 𝑓 (𝑋) − inf
𝑥∈𝐾

𝑓 (𝑥) .
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Thanks to convexity, there is a straightforward reduction from cumulative regret
to simple regret. Simply let 𝑋 = 1

𝑛

∑𝑛
𝑡=1 𝑋𝑡 . Then by convexity,

sReg𝑛 ≤
1
𝑛

Reg𝑛 . (1.4)

Another standard measure of performance in the stochastic setting is the sample
complexity, which is the number of interactions needed before the simple regret
is at most 𝜀 > 0 with high probability. The following fact provides a conversion
from a high probability bound on the cumulative regret to sample complexity.

Fact 6 Suppose that with probability at least 1− 𝛿 the regret of some algorithm
is bounded by Reg𝑛 ≤ 𝑅(𝑛). Then, by the above conversion, the sample
complexity can be bounded by the smallest 𝑛 such that 𝑅(𝑛)/𝑛 ≤ 𝜀. Concretely,
if 𝑅(𝑛) = 𝐴𝑛𝑝 for 𝑝 ∈ (0, 1) and 𝐴 > 0, then the sample complexity is at most
1 + (𝐴/𝜀)1/(1−𝑝) .

There is also a simple reduction from a bound on the expected regret to
a (high probability) sample complexity bound. The idea is to run the regret
minimising algorithm 𝑘max = 𝑂 (log(1/𝛿)) times with horizon 𝑛 large enough
that E[ 1

𝑛
Reg𝑛] ≤ 𝜀

4 . By Markov’s inequality and (1.4), with constant probability
the average iterate over any run is nearly optimal, which means that one of the
𝑘max average iterates is nearly optimal with high probability. Lastly, a best arm
identification procedure is applied to select a near minimiser among the 𝑘max
candidates. The full procedure and its analysis follow.

1 args : ba se a l g o r i t h m alg , 𝑅(·) , 𝜀 > 0 , 𝛿 ∈ (0, 1)
2 l e t 𝑛 = min{𝑠 : 𝑅(𝑠)/𝑠 ≤ 𝜀/4}
3 f o r 𝑘 = 1 to 𝑘max ≜

⌈
log(2/𝛿 )

log(2)

⌉
:

4 run alg ove r 𝑛 r ou nd s
5 o b s e r v e i t e r a t e s 𝑋1, . . . , 𝑋𝑛
6 l e t 𝑥̂𝑘 =

1
𝑛

∑𝑛
𝑠=1 𝑋𝑠

7 re turn bai(𝜀/2, 𝛿/2, 𝑥̂1, . . . , 𝑥̂𝑘max ) # Algorithm 9.2

Algorithm 1.1: A master algorithm for obtaining high probability sample
complexity bounds from a base algorithm with expected regret. See Section 9.3
for a detailed explanation of the bai subroutine.

Proposition 1.7 Suppose that E[Reg𝑛] ≤ 𝑅(𝑛). Then
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(1) Algorithm 1.1 queries the loss at most

𝑂

((
min

{
𝑛 :

𝑅(𝑛)
𝑛

≤ 𝜀

4

}
+ log(1/𝛿)

𝜀2

)
log(1/𝛿)

)
times; and
(2) With probability at least 1 − 𝛿 Algorithm 1.1 returns an 𝑋 ∈ 𝐾 such that

𝑓 (𝑋) ≤ inf
𝑥∈𝐾

𝑓 (𝑥) + 𝜀 .

Proof Let 𝑓★ = inf𝑥∈𝐾 𝑓 (𝑥). By (1.4),E[ 𝑓 (𝑥̂𝑘)]− 𝑓★ ≤ 𝜀
4 . Since 𝑓 (𝑥)− 𝑓★ ≥ 0

for all 𝑥 ∈ 𝐾 , by Markov’s inequality,

P
(
𝑓 (𝑥̂𝑘) − 𝑓★ ≥ 𝜀

2

)
≤ 1

2
.

Hence, by the definition of 𝑘max, with probability at least 1 − 𝛿/2 there exists a
1 ≤ 𝑘 ≤ 𝑘max such that

𝑓 (𝑥̂𝑘) − 𝑓★ ≤ 𝜀

2
.

Finally, by Theorem 9.9 the call to Algorithm 9.2 uses

𝑂

(
𝑘max

𝜀2 log
(
𝑘max
𝛿

))
queries to the loss function and with probability at least 1 − 𝛿/2 returns an
𝑋 ∈ {𝑥̂1, . . . , 𝑥̂𝑘max } with

𝑓 (𝑋) ≤ min
1≤𝑘≤𝑘max

𝑓 (𝑥̂𝑘) +
𝜀

2
.

Combining everything with a union bound completes the proof. □

Our focus for the remainder is primarily on the cumulative regret, but we
occasionally highlight the sample complexity of algorithms in order to compare
to the literature. The arguments above show that bounds on the cumulative
regret imply bounds on the simple regret and sample complexity. The converse
is not true.

Regret is random You should note that Reg𝑛 and sReg𝑛 are random variables
with the randomness arising from both the algorithm and the noise. Most of our
results either control E[Reg𝑛] or prove that Reg𝑛 is bounded by such-and-such
with high probability. Bounds that hold with high probability are generally
preferred since they can be integrated to obtain bounds in expectation. But
we will not be too dogmatic about this. Indeed, we mostly prove bounds in
expectation to avoid tedious concentration of measure calculations. As far as we
know, these always work out if you try hard enough.
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1.3 Notation

A list of notation is available in Appendix C.

Norms The norm ∥·∥ is the euclidean norm for vectors and the spectral norm
for matrices. For positive definite 𝐴, ⟨𝑥, 𝑦⟩𝐴 = 𝑥⊤𝐴𝑦 and ∥𝑥∥2

𝐴 = ⟨𝑥, 𝑥⟩𝐴.
Given a random variable 𝑋 , ∥𝑋 ∥𝜓𝑘 = inf{𝑡 > 0 : E[exp( |𝑋 |𝑘/𝑡)] ≤ 2} for
𝑘 ∈ {1, 2} are the Orlicz norms. Remember, 𝑋 is subgaussian if ∥𝑋 ∥𝜓2 < ∞
and subexponential if ∥𝑋 ∥𝜓1 < ∞. You can read more about the Orlicz norms
in Appendix B.

Sets R andZ are the sets of real values and integers. The restriction of the reals to
the (strictly) positive real line are R+ = [0,∞) and R++ = (0,∞). The euclidean
ball and spheres of radius 𝑟 are denoted by B𝑑𝑟 = {𝑥 ∈ R𝑑 : ∥𝑥∥ ≤ 𝑟} and
S𝑑−1
𝑟 = {𝑥 ∈ R𝑑 : ∥𝑥∥ = 𝑟}. Hopefully the latter is not confused with the space

of positive (semi-)definite matrices on R𝑑 , which we denote by (S𝑑+) S𝑑++. Given
𝑥 ∈ R𝑑 and 0 ≠ 𝜂 ∈ R𝑑 we let 𝐻 (𝑥, 𝜂) = {𝑦 : ⟨𝑦 − 𝑥, 𝜂⟩ ≤ 0}, which is a closed
half-space passing through 𝑥 with outwards-facing normal 𝜂. Given 𝑥 ∈ R𝑑 and
positive definite matrix 𝐴, 𝐸 (𝑥, 𝐴) = {𝑦 ∈ R𝑑 : ∥𝑥 − 𝑦∥𝐴−1 ≤ 1}, which is an
ellipsoid centered at 𝑥. When 𝐸 = 𝐸 (𝑥, 𝐴) is an ellipsoid, 𝐸 (𝑟) = 𝐸 (𝑥,

√
𝑟𝐴)

denotes the same ellipsoid scaled by a factor of 𝑟. The space of probability
measures on 𝐾 ⊂ R𝑑 is Δ(𝐾) where we always take the Borel 𝜎-algebra ℬ(𝐾).
Given natural number 𝑚, Δ𝑚 = {𝑝 ∈ R𝑚+ : ∥𝑝∥1 = 1} and Δ+

𝑚 = Δ𝑚 ∩ R𝑚++.
For 𝑥, 𝑦 ∈ R𝑑 we let [𝑥, 𝑦] = {(1 − 𝜆)𝑥 + 𝜆𝑦 : 𝜆 ∈ [0, 1]}, which is the chord
connecting 𝑥 and 𝑦.

Basic We define arithmetic operations on sets in the Minkowski fashion.
Concretely, given 𝐴, 𝐵 ⊂ R𝑑 the Minkowski sum is 𝐴+ 𝐵 = {𝑥 + 𝑦 : 𝑥 ∈ 𝐴, 𝑦 ∈
𝐵}. When 𝑢 ∈ R we let 𝑢𝐴 = {𝑢𝑥 : 𝑥 ∈ 𝐴} and of course −𝐴 = (−1)𝐴 and
𝐴 − 𝐴 = 𝐴 + (−𝐴). Occasionally for 𝑥 ∈ R𝑑 we abbreviate {𝑥} + 𝐴 = 𝑥 + 𝐴.
The boundary of 𝐴 is 𝜕𝐴 = {𝑥 ∈ 𝐴 : 𝑥 + B𝑑𝜀 ⊄ 𝐴 for all 𝜀 > 0} and the
interior is int(𝐴) = 𝐴 \ 𝜕𝐴. When 𝐴 is convex, the relative interior of 𝐴 is
ri(𝐴) = {𝑥 ∈ 𝐴 : exists 𝜀 > 0, (𝑥+B𝑑𝜀)∩aff (𝐴) ⊂ 𝐴} where aff (𝐴) is the affine
hull of 𝐴. The polar of 𝐴 is 𝐴◦ = {𝑢 : sup𝑥∈𝐴 ⟨𝑥, 𝑢⟩ ≤ 1}. We use 1 for the
identity matrix and 0 for the zero matrix or zero vector. Dimensions and types
will always be self-evident from the context. The euclidean projection onto 𝐾 is
Π𝐾 (𝑥) = arg min𝑦∈𝐾 ∥𝑥 − 𝑦∥. Suppose that 𝑓 : R𝑑 ⊃ 𝐴→ R is differentiable
at 𝑥 ∈ 𝐴, then we write 𝑓 ′ (𝑥) for its gradient and 𝑓 ′′ (𝑥) for its Hessian. When 𝑓
is convex we write 𝜕 𝑓 (𝑥) for the set of subderivatives of 𝑓 at 𝑥. More generally,
𝐷 𝑓 (𝑥) [ℎ] is the directional derivative of 𝑓 at 𝑥 in the direction ℎ. Higher-order
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directional derivatives are denoted by 𝐷𝑘 𝑓 (𝑥) [ℎ1, . . . , ℎ𝑘]. Note that for convex
𝑓 , 𝐷 𝑓 (𝑥) [ℎ] is defined for all 𝑥 ∈ int(dom( 𝑓 )) and ℎ ∈ R𝑑 but the mapping
ℎ ↦→ 𝐷 𝑓 (𝑥) [ℎ] need not be linear as the convex function R : 𝑥 ↦→ |𝑥 | shows.
Densities are always with respect to the Lebesgue measure. The diameter of a
nonempty set 𝐾 is

diam(𝐾) = sup
𝑥,𝑦∈𝐾

∥𝑥 − 𝑦∥ .

The Lipschitz constant of a function 𝑓 : 𝐾 → R is

lip𝐾 ( 𝑓 ) = sup
{
𝑓 (𝑥) − 𝑓 (𝑦)
∥𝑥 − 𝑦∥ : 𝑥, 𝑦 ∈ 𝐾, 𝑥 ≠ 𝑦

}
.

When 𝑓 : R𝑑 → R∪{∞} is convex we write lip( 𝑓 ) to mean lipdom( 𝑓 ) ( 𝑓 ) where
dom( 𝑓 ) = {𝑥 : 𝑓 (𝑥) < ∞}. Suppose that 𝐴, 𝐵 ∈ S𝑑+. Then 𝐴 ⪯ 𝐵 if 𝐵− 𝐴 ∈ S𝑑+
and 𝐴 ⪰ 𝐵 if 𝐴 − 𝐵 ∈ S𝑑+. 𝐴 ≺ 𝐵 and 𝐴 ≻ 𝐵 are defined similarly but with S𝑑+
replaced by S𝑑++.

Probability spaces We will not formally define the probability space on which
the essential random variables 𝑋1, 𝑌1, . . . , 𝑋𝑛, 𝑌𝑛 live. You can see how this
should be done in the book by Lattimore and Szepesvári (2020). In general
P is the probability measure on some space carrying these random variables
and we let ℱ𝑡 = 𝜎(𝑋1, 𝑌1, . . . , 𝑋𝑡 , 𝑌𝑡 ) be the 𝜎-algebra generated by the first
𝑡 rounds of interaction. Events are often defined as {condition}. For example,
{ 𝑓 (𝑋𝑡 ) > 𝜀} is the event that 𝑓 (𝑋𝑡 ) > 𝜀. We abbreviate P𝑡 (·) = P(·|ℱ𝑡 )
and E𝑡 [·] = E[·|ℱ𝑡 ].The multivariate Gaussian distribution with mean 𝜇 and
covarianceΣ is N (𝜇, Σ). Given 𝐴 ⊂ R𝑑 we let U (𝐴) be the uniform probability
measure on 𝐴, which can be defined in multiple ways. We only need it when 𝐴
is finite or 𝐴 ∈ {B𝑑𝑟 , S𝑑−1

𝑟 } where the definition is obvious.

Regret Recall the regret is

Reg𝑛 = sup
𝑥∈𝐾

𝑛∑︁
𝑡=1

( 𝑓𝑡 (𝑋𝑡 ) − 𝑓𝑡 (𝑥)) .

The sup cannot always be replaced by a max because even for compact 𝐾
the function 𝑓 may not be continuous. For example, when 𝐾 = [0, 1] and
𝑓 : 𝐾 → [0, 1] is defined by 𝑓 (0) = 1 and 𝑓 (𝑥) = 𝑥 for 𝑥 > 0, then 𝑓 is convex
and does not have a minimiser on 𝐾 . We occasionally need the regret relative to
a specific 𝑥 ∈ 𝐾 , which is

Reg𝑛 (𝑥) =
𝑛∑︁
𝑡=1

( 𝑓𝑡 (𝑋𝑡 ) − 𝑓𝑡 (𝑥)) .
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1.4 Notes

1.i: The function classes outlined in Definition 1.1 are by no means the only
ones considered. For example, the definition of smoothness can be generalised
beyond the second-order smoothness. There are multiple ways to do this, but
one is to call a function 𝑓 : R𝑑 → R is smooth of order 𝑝 ∈ [2,∞) on R𝑑 if for
all 𝑥, 𝑦 ∈ R𝑑 ,

∥𝐷𝑞 𝑓 (𝑥) − 𝐷𝑞 𝑓 (𝑦)∥ ≤ 𝛽 ∥𝑥 − 𝑦∥ 𝑝−𝑞 ,

where 𝑞 is the largest integer strictly smaller than 𝑝 and the norm of the left-hand
side is the operator norm. When 𝑝 = 2 and 𝑓 is convex this definition is
equivalent to what appears in Definition 1.1 (Nesterov, 2018, Theorem 2.1.5).
Zeroth-order convex optimisation has been studied for highly smooth functions
with slightly varying definitions of smoothness by Polyak and Tsybakov (1990);
Bach and Perchet (2016); Akhavan et al. (2020, 2024b) and others. This line of
work is briefly discussed in the notes of Chapter 6.

1.ii: The focus of this book is on a particular kind of constrained optimisation
where the learner must play in a convex body 𝐾 , which by definition is compact,
convex and has a non-empty relative interior. As mentioned, only boundedness
and convexity is really important for the results in this book. But assuming
boundedness discards many interesting settings. Most fundamentally, it prohibits
the unconstrained setting where 𝐾 = R𝑑 . Similarly, 𝐾 cannot be a half-space or
other unbounded subset of R𝑑 . Practically speaking unbounded domains can
often be reduced to bounded ones with prior knowledge that the minimiser must
lie in a bounded convex set. But such reductions do not always play well with
the other assumptions. For example, that the loss is bounded on 𝐾 .

1.iii: Another situation related to the constraint set that arises often is that
the losses are defined on all of R𝑑 and the learner can query any point in R𝑑 but
is only evaluated against the best point in 𝐾 . This setting is sometimes referred
to as the improper setting. The definition ensures that the improper setting is
easier than both the constrained setting (the learner has more power) and the
unconstrained setting (the adversary has less power).

1.iv: Other performance criteria also exist in the literature. For example,
both the distance to the minimiser and the gradient of the loss are potentially
sensible measures of quality. Neither of these is considered in this book.

1.v: We assume throughout that the noise either vanishes completely or is
1-subgaussian: E𝑡−1 [exp(𝜀2

𝑡 ) |𝑋𝑡 ] ≤ 2 and E𝑡−1 [𝜀𝑡 ] = 0. At the same time, we
often assume that the range of the losses is in [0, 1]. This means the scale of the
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noise is the same as the scale of the losses and makes it hard to know how the
range or variance of the noise might affect the regret bound if either of these
quantities were scaled individually. One analysis that decouples these quantities
is given in Section 6.6 and occasionally we give pointers to the literature or
suggest exercises/open problems.

1.vi: More exotic interaction protocols have also been investigated. Consider
for a moment adversarial setting without noise. A number of authors have
explored what changes if the learner is allowed to choose two points 𝑋𝑡 ,1, 𝑋𝑡 ,2 ∈
𝐾 and observes 𝑓𝑡 (𝑋𝑡 ,1) and 𝑓𝑡 (𝑋𝑡 ,2). One might believe that such a modification
would have only a mild effect but this is not at all the case. Having access to
two evaluations makes the bandit setup behave more like the full information
setting (Agarwal et al., 2010; Nesterov and Spokoiny, 2017; Duchi et al., 2015).
Essentially the learner can compute directional derivatives to arbitrary precision,
which is not possible in the standard setting. Note that in the stochastic setting
the noise is what makes it impossible to compute directional derivatives, while
in the adversarial setting there need not be any relation from one loss to the next.

1.vii: At the end of the day, the number of settings and possible assumptions
is enormous. We naturally selected a subset most aligned with our interest and
expertise. Many of the algorithms and analysis presented can be generalised
straightforwardly to other settings. But sometimes the conditions/modifications
are subtle. As much as possible we try to give pointers to the literature, but no
doubt much has been missed.



2
Overview of methods and history

2.1 Methods for bandit convex optimisation

Methods for bandit convex optimisation can be characterised into five classes:

◦ Cutting plane methods are important theoretical tools for linear programming
and non-smooth convex optimisation. The high-level idea is to iteratively cut
away pieces of 𝐾 that have large volume while ensuring that the minimiser
stays inside the active set. Cutting plane methods are the geometric version
of elimination algorithms for bandits and consequentially are typically
analysed in the stochastic setting. At least three works have adapted these
ideas to stochastic convex bandits. Agarwal et al. (2011) and Lattimore and
György (2021a) both use the ellipsoid method, while Carpentier (2024) uses
the center of gravity method. A simple bisection algorithm is discussed
in Chapter 4 for one-dimensional convex bandits while in Chapter 9 the
approach is generalised to higher dimensions using the center of gravity
method, ellipsoid method or the method of inscribed the ellipsoid.

◦ Gradient descent is the fundamental algorithm for (convex) optimisation and
a large proportion of algorithms for convex bandits use it as a building block
(Kleinberg, 2005; Flaxman et al., 2005; Saha and Tewari, 2011; Hazan and
Levy, 2014, and more). At a high level the idea is to estimate gradients of a
smoothed version of the loss and use these in gradient descent in place of the
real unknown gradients. We explore this idea in depth in Chapters 5 and 6.

◦ Newton’s method is a second-order method that uses curvature information
as well as the gradient. One of the challenges in bandit convex optimisation
is that algorithms achieving optimal regret need to behave in a way that
depends on the curvature. Second-order methods that estimate the Hessian of
the actual loss or a surrogate have been used for bandit convex optimisation

13



14 Overview of methods and history

by (Suggala et al., 2021; Lattimore and György, 2023; Suggala et al., 2024;
Fokkema et al., 2024) and are the topic of Chapter 10.

◦ Continuous exponential weights is a powerful algorithm for full information
online learning and has been used for convex bandits by Bubeck et al. (2017),
who combined it with the surrogate loss function described in Chapter 12
along with many tricks to construct the first polynomial time algorithm for
bandit convex optimisation in the adversarial setting with 𝑂 (

√
𝑛) regret

and without any assumptions beyond boundedness. Their algorithm is more
complex than you might like and is not discussed here except for the special
case when 𝑑 = 1 where many details simplify and the approach yields a
reasonably practical algorithm. More details are in Chapter 8.

◦ Information-directed sampling is a principled Bayesian algorithm for se-
quential decision making (Russo and Van Roy, 2014). Bubeck et al. (2015)
showed how to use information-directed sampling to bound the Bayesian
regret for one-dimensional convex bandits and then applied minimax duality
to argue that the minimax Bayesian regret is the same as the adversarial regret.
This idea was later extended by Bubeck and Eldan (2018) and Lattimore
(2020). Although these methods still yield the best known bounds for the
adversarial setting, they are entirely non-constructive thanks to the applica-
tion of minimax duality. We explain how these ideas relate to continuous
exponential weights and mirror descent in Chapter 8.

2.2 History

Bandit convex optimisation is a relative newcomer in the bandit literature,
with the earliest work by Kleinberg (2005) and Flaxman et al. (2005), both of
whom use gradient-based methods in combination with gradient estimates of
the smoothed losses (explained in Chapter 5). At least for losses in ℱb,l they
showed that the regret is at most 𝑂 (𝑛3/4). Agarwal et al. (2010) showed that by
assuming strong convexity and smoothness the regret of these algorithms could
be improved to 𝑂 (

√
𝑛) in the improper setting where the learner is allowed to

query outside 𝐾 (see Note 1.ii).
The big question was whether or not 𝑂 (

√
𝑛) regret is possible without

assuming smoothness and strong convexity. A resolution in the stochastic setting
was provided by Agarwal et al. (2013), who used the ellipsoid method in
combination with the pyramid construction of (Nemirovsky and Yudin, 1983,
Chapter 9), which is classically used for deterministic zeroth-order optimisation.
They established 𝑂 (𝑑16√𝑛) regret while assuming only that the loss is bounded
and Lipschitz. Because their algorithm is essentially an elimination method,
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the idea does not generalise to the adversarial setting where the minimiser may
appear to be in one location for a long time before moving elsewhere.

Meanwhile, back in the adversarial setting Hazan and Levy (2014) assumed
strong convexity and smoothness to prove that a version of follow-the-regularised-
leader achieves 𝑂 (

√
𝑛) regret without the assumption that the learner can play

outside the constraint set, thus improving the results of Agarwal et al. (2010). The
observation is that the increased variance of certain estimators when the learner
is playing close to the boundary can be mitigated by additional regularisation at
the boundary using a self-concordant barrier (Chapter 6).

One fundamental question remained, which is whether or not 𝑂 (
√
𝑛) regret

was possible in the adversarial setting without strong convexity or smoothness.
The first breakthrough in this regard came when Bubeck et al. (2015) proved that
𝑂 (

√
𝑛) regret is possible in the adversarial setting with no assumptions beyond

convexity and boundedness, but only when 𝑑 = 1. Strikingly, their analysis was
entirely non-constructive with the argument relying on minimax duality to relate
the Bayesian regret to the adversarial regret and information-theoretic means to
bound the Bayesian regret (Russo and Van Roy, 2014).

Bubeck and Eldan (2018) subsequently extended the information-theoretic
tools to 𝑑 > 1 showing for the first time that poly(𝑑)

√
𝑛 regret is possible

in the adversarial setting. Later, Lattimore (2020) refined these arguments to
prove that the minimax regret for adversarial bandit convex optimisation with
no assumptions beyond boundedness and convexity is at most 𝑑2.5√𝑛. This
remains the best known result in the adversarial setting with losses in ℱb.
One last chapter in the information-theoretic story is a duality between the
information-theoretic means and classical approaches based on mirror descent.
Lattimore and György (2021b) have shown that any bound obtainable with
the information-theoretic machinery of Russo and Van Roy (2014) can also be
obtained using mirror descent. Their argument is still non-constructive since
the mirror descent algorithm needs to solve an infinite-dimensional convex
optimisation problem. Nevertheless, we believe this is a promising area for
further exploration (Chapter 8).

The most obvious remaining challenge was to find an efficient algorithm with
𝑂 (

√
𝑛) regret for the adversarial setting and losses in ℱb. An interesting step in

this direction was given by Hazan and Li (2016) who proposed an algorithm
with 𝑂 (

√
𝑛) regret but super-exponential dependence on the dimension. Their

algorithm had a running time of 𝑂 (log(𝑛)poly(𝑑) ).
Finally, Bubeck et al. (2017) constructed an algorithm based on continuous

exponential weights for which the regret in the adversarial setting with losses in
ℱb is bounded by 𝑂 (𝑑10.5√𝑛). Furthermore, the algorithm can be implemented
in polynomial time. Although a theoretical breakthrough, there are several
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serious limitations of this algorithm. For one, the dimension-dependence is so
large that in practically all normal situations one of the earliest algorithms would
have better regret. Furthermore, although the algorithm can be implemented in
polynomial time, it relies on approximate log-concave sampling and approximate
convex optimisation in every round. Practically speaking the algorithm is near-
impossible to implement. The exception is when 𝑑 = 1 where many aspects of
the algorithm simplify (Chapter 8).

The remaining challenge at this point was (and still is) to improve the
practicality of the algorithms and reduce the dimension-dependence in the
regret. Lattimore and György (2021a) used the ellipsoid method in the stochastic
setting in combination with the surrogate loss introduced by Bubeck et al. (2017)
to show that 𝑂 (𝑑4.5√𝑛) regret is possible in that setting with a semi-practical
algorithm. Recently Lattimore and György (2023) showed that 𝑂 (𝑑1.5√𝑛)
regret is possible in the improper stochastic setting when the loss is Lipschitz
and 𝐾 = B𝑑1 , which was extended to the constrained setting without the
Lipschitz assumption by Fokkema et al. (2024). This last algorithm is detailed
in Chapter 10.

2.3 Lower bounds

You should be wondering about lower bounds. What are the fundamental
limitations in bandit convex optimisation? The situation is a bit miserable (the
optimist says “hopeful”). The best known lower bound when the losses are in
ℱb is that the minimax regret is at least Ω(𝑑

√
𝑛). What is upsetting about this is

that the lower bound was established using linear losses where the upper bound
is also 𝑂 (𝑑

√
𝑛). Can it really be that the hardest examples in the enormous

non-parametric class of bounded convex functions ℱb lie in the tiny subset of
linear functions? Our intuition from the full information setting says it could be
like this. Curvature always helps in the full information setting. We discuss in
Chapter 10 why in bandit convex optimisation curvature both helps and hinders
in a complicated way. There also exist lower bounds for more structured classes
of convex losses, which are summarised in Table 2.1. Importantly, even when
strong convexity and smoothness are assumed, the lower bound is still Ω(𝑑

√
𝑛).
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author regret class constraint set

Dani et al. 20081 Ω(𝑑
√
𝑛) ℱ

s
b,lin

product of spheres

Shamir 2013 Ω(𝑑
√
𝑛) ℱ

s,i
b,l,sc,sm

, 𝛼 = 1
2 , 𝛽 = 7

2 𝐾 = B𝑑1

Shamir 2013 Ω(𝑑
√
𝑛) ℱ

s
b,l,quad,sc,sm

, 𝛼 = 𝛽 = 1 𝐾 = B𝑑1

Akhavan et al. 2024b2 Ω( 𝑑
√
𝑛

max(1,𝛼) ) ℱ
s,i
b,l,sc,sm

, 𝛽 = 𝑂 (𝛼) 𝐾 = B𝑑1

simple regret

Shamir 2013 Ω(𝑑/
√
𝑛) ℱ

s,i
b,l,sc,sm

, 𝛼 = 1
2 , 𝛽 = 7

2 𝐾 = B𝑑1

Akhavan et al. 2024b2 Ω( 𝑑

max(1,𝛼)
√
𝑛
) ℱ

s,i
b,l,sc,sm

, 𝛽 = 𝑂 (𝛼) 𝐾 = B𝑑1

1 This result was proven for a non-convex 𝐾 . As Shamir (2015) argues, in the linear
setting lower bounds for non-convex sets imply lower bounds on conv(𝐾) via a simple
reduction. For linear bandits, lower bounds of Ω(𝑑

√
𝑛) are also known when 𝐾 = [0, 1]𝑑

and 𝐾 = B𝑑1 (Rusmevichientong and Tsitsiklis, 2010; Lattimore and Szepesvári, 2020).
2 These authors also prove a more general result for function classes with more
smoothness and their results hold for a large class of noise models.

Table 2.1: Summary of lower bounds. In the class colum we use a (s) superscript
to indicate that the lower bound holds in the stochastic setting and (i) that it
holds in the improper setting explained in Note 1.ii. In the improper setting,
Lipschitzness and boundedness only hold inside 𝐾 while smoothness and strong
convexity hold everywhere.

Let us make some comments on the lower bounds and how they relate to each
other:

◦ The unconstrained and constrained settings are both harder than the im-
proper setting. Hence, lower bounds that hold in the later also hold in the
unconstrained/constrained settings.

◦ The reduction in (1.4) shows that lower bounds on the simple regret imply
lower bounds on the cumulative regret.

◦ Lower bounds that are proven with Gaussian noise can be generalised to
lower bounds with bounded noise at the price of at most logarithmic factors,
which follows by a scaling and truncation argument (Shamir, 2015).

◦ The adversarial setting as defined here is strictly harder than the stochastic
setting, which means that all the bounds in Table 2.1 also apply to the
adversarial setting. Many authors focus on the adversarial setting without
noise and where the losses are assumed to be bounded. The scaling and
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truncation argument by Shamir (2015) shows that lower bounds proven with
Gaussian noise also apply in this case except for logarithmic factors.

◦ As far as we know, no-one has written a minimax simple regret lower
bound for linear losses. At least when 𝐾 = [−1, 1]𝑑 , then the technique for
bounding the cumulative regret by Lattimore and Szepesvári (2020) also
yields a bound on the simple regret of Ω(𝑑/

√
𝑛).

◦ The quadratic case with smoothness and strong convexity is quite interesting.
The lower bound on the cumulative regret is Ω(𝑑

√
𝑛), which except for

logarithmic factors is matched by upper bounds in the unconstrained/improper
settings (Agarwal et al., 2010; Akhavan et al., 2020) and nearly so in the
constrained setting (Hazan and Levy, 2014). In the unconstrained/improper
settings, however, the upper bound on the simple regret improves to𝑂 (𝑑2/𝑛).
This shows that the reduction in (1.4) is not guaranteed to be tight.

◦ Many of the algorithms in this book are based on combining gradient descent
with noisy gradient estimates of some surrogate loss function. Hu et al.
(2016) explore the limitations of this argument. Their idea is to modify the
information available to the learner. Rather than observing the loss directly,
the learner observes a noisy gradient estimate from an oracle that satisfies
certain conditions on its bias and variance. This allows the authors to prove
a lower bound in terms of the bias and variance of the oracle that holds for
any algorithm. The main application is to argue that any analysis using the
spherical smoothing estimates explained in Chapter 5 either cannot achieve
𝑂 (

√
𝑛) regret or the analysis must use some more fine-grained properties of

the specific estimator than its bias and variance alone.

2.4 Classical stochastic optimisation and non-convex methods

This book has a particular focus on constrained optimisation with finite-time
bounds on the regret as a measure of performance. You are surely not surprised
to know that stochastic zeroth-order optimisation has a long history. Maybe
one of the earliest works is by Kiefer and Wolfowitz (1952),1 who studied the
one-dimensional problem and constructed an iterative algorithm based on the
Robbins–Monro algorithm for root finding (Robbins and Monro, 1951). The
same idea was generalised to the multi-dimensional setting by Blum (1954).
In the language of online learning, these algorithms are rather similar to the
gradient-based algorithms proposed by Flaxman et al. (2005) with the only real
difference that they work in the stochastic setting and use multiple queries to

1 This paper is just 5 pages long. You should go and read it right now and come back.
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estimate the gradient rather than the single-point estimator used by Flaxman et al.
(2005) (see Chapter 5). By the way, this difference is important in the adversarial
setting where the learner does not have the luxury of obtaining multiple samples
from the same function. The more fundamental difference, however, is in the
assumptions and analysis. The stochastic optimisation community has largely
avoided assuming global convexity but is quite satisfied to make assumptions
on smoothness and (more importantly) proving asymptotic convergence bounds.
Because of this, the results have a different flavour and can be hard to compare.
For example, Kiefer and Wolfowitz (1952) prove their scheme converges to the
minimiser of 𝑓 in probability under mild assumptions on the noise and assuming
that

(1) 𝑓 is unimodal and has a global minimiser 𝑥★ ∈ R; and
(2) 𝑓 is bounded and Lipschitz on an interval containing 𝑥★; and
(3) 𝑓 is not arbitrarily flat away from the minimiser. Formally, there exists a
function 𝜚 : (0,∞) → (0,∞) such that

|𝑥 − 𝑥★ | ≥ 𝜀 implies inf
𝛿∈ (0, 𝜀/2)

| 𝑓 (𝑥 + 𝛿) − 𝑓 (𝑥 − 𝛿) |
𝛿

> 𝜚(𝜀) .

Convergence in probability is rather a weak notion and later work has strength-
ened this considerably, for example, by proving asymptotic normality (Spall,
1992). At the moment there seems to be a regrettable divide between the bandit
convex optimisation literature and classical stochastic optimisation literature.
The two communities focus on different aspects of related problems with the for-
mer intent on finite-time bounds in the convex setting with limited assumptions
beyond global convexity. The latter lean more towards exact asymptotic analysis
with more local assumptions. It seems there is some scope for unification, which
we do not address at all here.

Dependent noise model In many works on zeroth-order stochastic optimisation
there is some unknown convex function 𝑓 : 𝐾 → R to be minimised. The
learner has oracle access to some function 𝐹 : 𝐾 × Ω → R and a probability
measure 𝜌 on measurable space (Ω,𝒢) such that∫

Ω

𝐹 (𝑥, 𝜉) d𝜌(𝜉) = 𝑓 (𝑥) ∀𝑥 ∈ 𝐾 .

Equivalently, 𝑓 (𝑥) = E[𝐹 (𝑥, 𝜉)] when 𝜉 has law 𝜌. The learner can sample
freely from 𝜌 and query 𝐹 at any point 𝑥 ∈ 𝐾 and 𝜉 ∈ Ω. Structural assumptions
are then made on 𝐹, 𝑓 or both. For example, Nesterov and Spokoiny (2017)
assume that 𝑓 is convex and 𝑥 ↦→ 𝐹 (𝑥, 𝜉) is Lipschitz 𝜌-almost surely. The
big difference relative to the setting we study is that the learner can query
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𝑥 ↦→ 𝐹 (𝑥, 𝜉) at multiple points with the same 𝜉 ∈ Ω. Our stochastic setting
can more-or-less be modelled in this setting but where the only assumption
on 𝐹 is that for all 𝑥 ∈ 𝐾 the random variable 𝐹 (𝑥, 𝜉) has well-behaved
moments. Our setting is slightly more generic because we allow the noise to
depend on the history as well as the decision. Whether or not you want to
make continuity/Lipschitz/smoothness assumptions on 𝐹 depends on how your
problem is modelled. Here are two real-world examples.

◦ You are crafting a new fizzy beverage and need to decide how much sugar
to add. A focus group has been arranged and with each person you can
give a few samples and obtain their scores. You want to find the amount of
sugar that maximises the expected score over the entire population. This
problem fits the stochastic optimisation viewpoint because you can trial
several difference recipes with each person in your focus group. Connecting
this formally to the notation, Ω is the space of potential customers and 𝜌 is
some reasonable distribution over customers. 𝐾 is the space of parameters
for the fizzy beverage (the amount of sugar) and 𝐹 (𝑥, 𝜉) is the loss suffered
by person 𝜉 on beverage 𝑥.

◦
Donkey Post

You operate a postal service using donkeys to
transport mail between Sheffield and Hather-
sage. Donkeys are stoic creatures and do
not give away how tired they are. Every day
you decide how much to load your donkey.
Overload and they might have a nap along
the way but obviously you want to transport
as much post as possible. The success of a
journey is a function of how much mail was
delivered and how long it took. You’ll get a telegraph with this information at
the end of the day. This problem is best modelled using the bandit framework
because the tiredness of the donkey varies from day to day unpredictably
and you only get one try per day. Formally in this setting 𝐾 is the set of
possible loads for the donkey and 𝜌 is a distribution on unobservable states.

There is too much material to do justice to this literature here. Some influential
papers are by Ghadimi and Lan (2013) and Nemirovski et al. (2009).

2.5 Summary table

The table below summarises the past and current situation. Those bounds
that depend on 𝑛 are regret bounds while those that depend on 𝜀 are sample
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complexity bounds. Remember you can use Fact 6 or Proposition 1.7 to convert
a regret bound into a sample complexity bound. The superscript (s) in the
function classes indicate whether or not the work only considers the stochastic
setting, while the superscript (i) is used when the algorithm needs to query
outside 𝐾 (the improper setting of Note 1.ii). In some cases the subindice
𝑑 = 1 in the function class indicates that the algorithm assumes the dimension
𝑑 = 1. The quantity 𝜗 is the parameter associated with a self-concordant barrier
on 𝐾 (see Chapter 6) and 𝐷 is an abbreviation for the diameter 𝐷 = diam(𝐾).
The compute column gives the per-round complexity of each algorithm, which
is ∞ in the few cases that the regret bound was established non-constructively.
Some algorithms need to position 𝐾 into Löwner’s position or isotropic position,
which is marked in the compute column by löw and iso, respectively. The
compute column also indicates whether the algorithm uses one of the classical
cutting plane methods: ellipsoid method (ellipsoid), center of gravity method
(cog) or the method of inscribed ellipsoid (inscribed). The symbol Π refers to
the complexity of a euclidean projection onto 𝐾, which depends on how 𝐾 is
represented and svd the complexity of a singular value decomposition, which
is generally 𝑂 (𝑑3). Those algorithms that use 𝑂 (1) computation per round all
query the same point for many rounds in a row. In many implementations this
could take 𝑂 (𝑑) computation, since storing/copying the iterate generally has
this complexity. We offload this aspect to the oracle computing the loss function.
The last column refers to the chapter where we analyse the relevant algorithm,
if applicable.
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author regret/comp
logs omitted

class compute ch

Flaxman et al. (2005) 𝑑1/2𝐷1/2𝑛3/4
ℱb,l 𝑂 (𝑑) + Π 5

" 𝑑𝑛5/6
ℱb 𝑂 (𝑑) + Π + iso

This book 𝑑1/2𝜗1/4𝑛3/4
ℱb 𝑂 (𝑑2) + opt + svd 6

Agarwal et al. (2010)1 𝑑
√︁
𝛽𝑛/𝛼 ℱ

i
b,sm,sc

𝑂 (𝑑)
Saha and Tewari (2011) [𝜗𝛽]1/3 [𝐷𝑑𝑛]2/3

ℱb,sm 𝑂 (𝑑2) + opt + svd 6

Agarwal et al. (2013)
√
𝑛 ℱ

s
l,𝑑=1 𝑂 (1) 4

Agarwal et al. (2013) 𝑑16√𝑛 ℱ
s
b,l

𝑂 (1), ellipsoid

Hazan and Levy (2014) 𝑑
√︁
(𝜗 + 𝛽/𝛼)𝑛 ℱb,sm,sc 𝑂 (𝑑2) + opt + svd 6

Belloni et al. (2015) 𝑑7.5/𝜀2
ℱ
s 𝑂 (1)

Bubeck et al. (2015)
√
𝑛 ℱb,𝑑=1 ∞

Hazan and Li (2016) 2(𝑑4 )√𝑛 ℱb 𝑂 (log(𝑛)poly(𝑑) )
Bubeck et al. (2017) 𝑑10.5√𝑛 ℱb poly(𝑑, 𝑛)

"
√
𝑛 ℱb,𝑑=1 𝑂 (

√
𝑛) 8

Bubeck et al. (2018) 𝑑18√𝑛 ℱb ∞
Lattimore (2020) 𝑑2.5√𝑛 ℱb ∞
Ito (2020)2 𝑑

√︁
𝛽𝑛/𝛼 ℱb,sm,sc poly(𝑑)

" 𝑑1.5
√︁
𝛽𝑛/𝛼 ℱb,sm,sc poly(𝑑)

Suggala et al. (2021) 𝑑16√𝑛 ℱb,quad poly(𝑑)
Lattimore and György (2021a) 𝑑4.5√𝑛 ℱ

s
b

𝑂 (𝑑2), ellipsoid

Lattimore and György (2023)1 𝑑1.5√𝑛 ℱ
s,i
l

𝑂 (𝑑2) + svd

Fokkema et al. (2024)3 𝑑1.5√𝑛 ℱ
s
b

𝑂 (𝑑2) + Π + svd, löw 10

Fokkema et al. (2024) 𝑑2√𝑛 ℱ
s
b

𝑂 (𝑑2) + Π + svd, iso 10

Fokkema et al. (2024) 𝑑2.5√𝑛 ℱb poly(𝑑, 𝑛), iso 11

Carpentier (2024) 𝑑4/𝜀2
ℱ
s
b

𝑂 (𝑑2), cog 9

This book 𝑑5/𝜀2
ℱ
s
b

𝑂 (𝑑2), ellipsoid 9

This book 𝑑4/𝜀2
ℱ
s
b

𝑂 (𝑑2), inscribed 9

1 These results hold in the improper setting of Note 1.ii and with 𝐾 a euclidean ball.
2 This result holds when the minimiser lies deep inside 𝐾 .
3 This also holds if 𝐾 is symmetric and either in John’s position or its polar is isotropic.



2.6 Notes 23

2.6 Notes

2.i: There are some books on zeroth-order optimisation (Larson et al., 2019;
Conn et al., 2009, for example). These works focus most of their attention
on noise free settings and without a special focus on convexity. Nemirovsky
and Yudin (1983) is a more theoretically focussed book with one chapter on
zeroth-order methods. Bhatnagar et al. (2012) take the asymptotic stochastic
optimisation viewpoint. There is also a nice short and quite recent survey by
Liu et al. (2020).

2.ii: Speaking of non-convexity, zeroth-order methods are also analysed in
non-convex settings. Sometimes the objective is still to find the global minimum,
but for many non-convex problems this cannot be done efficiently. In such cases
one often tries to find a point 𝑥 ∈ 𝐾 such that ∥ 𝑓 ′ (𝑥)∥ is small or even a local
minimum. We only study convex problems here. A recent reference for the
non-convex case is the work by Balasubramanian and Ghadimi (2022).

2.iii: There are esoteric settings that are quite interesting and may suit some
applications. For example, Bach and Perchet (2016) study a problem where the
learner chooses two actions in each round. The learner receives information for
only the first action but is evaluated based on the quality of the second. They
also study higher levels of smoothness than we consider here.

2.iv: Online learning has for a long time made considerable effort to prove
adaptive bounds that yield stronger results when the loss functions are somehow
nice or show that the learner adapts to non-stationary environments. Such results
have also been commonplace in the standard bandit literature and are starting
to appear in the convex bandit literature as well (Zhao et al., 2021; Luo et al.,
2022; Wang, 2023; Liu et al., 2025)

2.v: We did not talk that much about the efforts focussed on sample complexity
or simple regret for the stochastic setting. Jamieson et al. (2012) consider
functions in ℱsm,sc and 𝐾 = R𝑑 and prove a sample complexity bound of𝑂 ( 𝑑3

𝜀2 )
for an algorithm based on coordinate descent with polynomial dependence on
the smoothness and strong convexity parameters hidden. Belloni et al. (2015) use
an algorithm based on simulated annealing to prove a sample complexity bound
of 𝑂 ( 𝑑7.5

𝜀2 ) for losses in ℱb. In its current form their algorithm is not suitable for
regret minimisation though this minor deficiency may be correctable. Another
thing to mention about that work is that the algorithm is robust in the sense that
it can (approximately) find minima of functions that are only approximately
convex. Slightly earlier Liang et al. (2014) also use a method based on random
walks but obtained a worse rate of 𝑂 ( 𝑑14

𝜀2 ).



3
Mathematical tools ( )

The purpose of this chapter is to introduce the necessary tools from optimisation,
convex geometry and convex analysis. You can safely skip this chapter, referring
back as needed. The main concepts introduced are as follows:

◦ Convex bodies, the Minkowski and support functions and basic theory of
polarity.

◦ Basic properties associated with smoothness and strong convexity.
◦ The near-Lipschitzness of convex functions and the implications of this on

the location of near-minimisers of convex functions.
◦ Rounding procedures for convex bodies, including the classical John’s and

isotropic positions of convex bodies.
◦ Smoothing operators and mechanisms for extending the domain of a convex

function 𝑓 : 𝐾 → R to all of R𝑑 .
◦ Methods for computing various operations on convex bodies, such as

projection and optimisation.

3.1 Convex bodies

A convex set 𝐾 ⊂ R𝑑 is a convex body if it is compact and has a nonempty
interior. The latter corresponds to the existence of an 𝑥 ∈ R𝑑 and 𝜀 > 0 such
that 𝑥 + B𝑑𝜀 ⊂ 𝐾. The Minkowski functional of 𝐾 is the function 𝜋 : R𝑑 → R
defined by

𝜋(𝑥) = inf {𝑡 > 0 : 𝑥 ∈ 𝑡𝐾} .

A top-down illustration is provided in Figure 3.1a. Another way to visualise the
Minkowski functional is via the suspension cone, which is the set

𝑆(𝐾) = {(𝑥, 𝑦) : 𝑥 ∈ R𝑑 , 𝑦 ∈ R, 𝜋(𝑥) ≤ 𝑦, 𝑦 ≥ 0} .

24
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The set 𝑆(𝐾) is a cone with tip (0, 0) and {𝑥 : (𝑥, 1) ∈ 𝑆} = 𝐾 . In most of our
applications 0 ∈ int(𝐾) and 𝐾 is a convex body (hence closed). In this case
1𝐾 (𝑥) = 1(𝜋(𝑥) ≤ 1). Moreover, when 𝐾 is a symmetric convex body, then 𝜋
is a norm and 𝐾 is its unit ball. The support function is

ℎ(𝑢) = sup
𝑥∈𝐾

⟨𝑢, 𝑥⟩ .

The support function is defined so that for any R𝑑 ∋ 𝑢 ≠ 0, the hyperplane
{𝑥 : ⟨𝑢, 𝑥⟩ = ℎ(𝑢)} is a supporting hyperplane of 𝐾 (Figure 3.1b). Of course
the Minkowski functional and support function both depend on 𝐾 as well as 𝑥.
When necessary we explicitly write 𝜋𝐾 or ℎ𝐾 but in general the set will be 𝐾
and is omitted from the notation.

0

𝑥
𝑥

𝜋 (𝑥 ) 𝑦

𝑦

𝜋 (𝑦)𝐾

(a) Minkowski functional

𝑢

{𝑥 : ⟨𝑢, 𝑥⟩ = ℎ(𝑢)}

𝐾

(b) Support function

Figure 3.1: The Minkowski and support functions.

The polar is 𝐾◦ = {𝑢 ∈ R𝑑 : ℎ(𝑢) ≤ 1}. The polar is not easy to visualise
and for our purposes an in-depth understanding of this concept is rarely needed.
Readers looking for more intuition and theory should read the classic text:
(Rockafellar, 1970, §14).

Proposition 3.1 The following hold:

(1) Given convex bodies 𝐾 ⊂ 𝐽, polarity reverses inclusion: 𝐽◦ ⊂ 𝐾◦.
(2) Given convex body 𝐾 with 0 ∈ int(𝐾), the polar 𝐾◦ is a convex body with
0 ∈ int(𝐾◦).
(3) The polar body of a nonempty ball 𝐾 = B𝑑𝑟 is 𝐾◦ = B𝑑1/𝑟 .
(4) For symmetric convex body 𝐾 , ∥·∥𝐾 ≜ 𝜋𝐾 (·) is a norm.
(5) For symmetric convex body 𝐾 , the dual of ∥·∥𝐾 is ∥·∥𝐾◦ :

∥𝑢∥𝐾◦ = max{⟨𝑢, 𝑥⟩ : ∥𝑥∥𝐾 ≤ 1, 𝑥 ∈ R𝑑} .

Exercise 3.2 ⋆ Prove Proposition 3.1.
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The Minkowski functional has many properties:

Lemma 3.3 Let 𝐾 be a convex body with 0 ∈ int(𝐾) and 𝜋 the associated
Minkowski functional. The following hold:

(1) 𝜋(𝛼𝑥) = 𝛼𝜋(𝑥) for all 𝛼 > 0.
(2) 𝜋 is convex.
(3) 𝜋(𝑥 + 𝑦) ≤ 𝜋(𝑥) + 𝜋(𝑦) for all 𝑥, 𝑦 ∈ R𝑑 .
(4) 𝑥/𝜋(𝑥) ∈ 𝜕𝐾 whenever 𝜋(𝑥) > 0.
(5) 𝜋 is the support function of the polar body: 𝜋(𝑥) = sup𝑢∈𝐾◦ ⟨𝑥, 𝑢⟩.
(6) 𝐷𝜋(𝑥) [ℎ] = ⟨𝑢, ℎ⟩ for some 𝑢 ∈ 𝐾◦.
(7) lip(𝜋) ≤ 1/𝑟 whenever B𝑑𝑟 ⊂ 𝐾 .

Proof Part (1) is immediate from the definitions. For part (2), by definition,
𝑥 ∈ 𝜋(𝑥)𝐾 and 𝑦 ∈ 𝜋(𝑦)𝐾 . Hence, for any 𝜆 ∈ [0, 1],

(1 − 𝜆)𝑥 + 𝜆𝑦 ∈ (1 − 𝜆)𝜋(𝑥)𝐾 + 𝜆𝜋(𝑦)𝐾 = ((1 − 𝜆)𝜋(𝑥) + 𝜆𝜋(𝑦))𝐾 .

Therefore 𝜋((1−𝜆)𝑥 +𝜆𝑦) ≤ (1−𝜆)𝜋(𝑥) +𝜆𝜋(𝑦), which establishes convexity.
Part (3) follows from (1) and (2) since 𝜋(𝑥 + 𝑦) = 𝜋((2𝑥)/2 + (2𝑦)/2) ≤
𝜋(2𝑥)/2+𝜋(2𝑦/2) = 𝜋(𝑥)+𝜋(𝑦). For part (4), let 𝑥 be such that 𝜋(𝑥) > 0. That
𝑥/𝜋(𝑥) ∈ 𝐾 is immediate from the definition. Suppose that 𝑦 = 𝑥/𝜋(𝑥) ∈ int(𝐾),
then there exists an 𝜖 > 0 such that 𝑦 + B𝑑𝜖 ⊂ 𝐾. A simple calculation shows
there exists a 𝛿 ∈ (0, 𝜋(𝑥)) such that 𝑥/(𝜋(𝑥) − 𝛿) ∈ 𝐾, which contradicts
the definition of 𝜋(𝑥). Part (5) is given by Rockafellar (1970, Theorem 14.5)
and part (6) follows from part (5) and Rockafellar (1970, Corollary 23.5.3).
Part (7) follows because the Minkowski functional is the support function
of the polar body 𝐾◦ and polarity reverses inclusion, 𝐾◦ ⊂ B𝑑1/𝑟 . Finally, the
subgradients of the support function are in 𝐾◦ and the result follows (Rockafellar,
1970, Corollary 23.5.3). □

Convex functions 𝑓 : 𝐾 → [0, 1] are often not well-behaved near the
boundary (see Section 3.4). For this reason we often shrink 𝐾 towards the origin.
Given 𝜀 > 0, let

𝐾𝜀 = {(1 − 𝜀)𝑥 : 𝑥 ∈ 𝐾} = {𝑥 ∈ 𝐾 : 𝜋(𝑥) ≤ 1 − 𝜀} .

Lemma 3.4 Suppose that B𝑑𝑟 ⊂ 𝐾 and 𝑥 ∈ 𝐾𝜀 . Then 𝑥 + B𝑑𝑟 𝜀 ⊂ 𝐾 .

Proof Let 𝑥 ∈ 𝐾𝜀 . By the definition of the Minkowski functional there exists
a 𝑦 ∈ 𝐾 such that 𝑥 = (1 − 𝜀)𝑦. Since 𝐾 is convex and B𝑑𝑟 ⊂ 𝐾 , it follows that

𝐾 ⊃ 𝜀B𝑑𝑟 + (1 − 𝜀)𝑦 = 𝑥 + B𝑑𝜀𝑟 . □
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3.2 Smoothness and strong convexity

For your own understanding, you should solve the following:

Exercise 3.5 ⋆ Suppose that 𝑓 ∈ ℱsm,sc and 𝑓 is twice differentiable. Then

𝛼1 ⪯ 𝑓 ′′ (𝑥) ⪯ 𝛽1 for all 𝑥 ∈ int(𝐾) .

Besides this, the only properties of smoothness and strong convexity that we
need are as follows:

Lemma 3.6 If 𝑓 ∈ ℱ is 𝛼-strongly convex, then for all 𝑦 ∈ int(dom( 𝑓 )),

𝑓 (𝑥) ≥ 𝑓 (𝑦) + 𝐷 𝑓 (𝑦) [𝑥 − 𝑦] + 𝛼

2
∥𝑥 − 𝑦∥2 .

Proof Let 𝑔(𝑥) = 𝑓 (𝑥)− 𝛼
2 ∥𝑥∥2, which by assumption is convex. By convexity,

𝑓 (𝑥) − 𝛼

2
∥𝑥∥2 = 𝑔(𝑥)

≥ 𝑔(𝑦) + 𝐷𝑔(𝑦) [𝑥 − 𝑦]

= 𝑓 (𝑦) − 𝛼

2
∥𝑦∥2 + 𝐷 𝑓 (𝑦) [𝑥 − 𝑦] − 𝛼 ⟨𝑦, 𝑥 − 𝑦⟩ .

Rearranging shows that

𝑓 (𝑥) ≥ 𝑓 (𝑦) + 𝐷 𝑓 (𝑦) [𝑥 − 𝑦] + 𝛼

2
∥𝑥∥2 − 𝛼

2
∥𝑦∥2 − 𝛼 ⟨𝑦, 𝑥 − 𝑦⟩

= 𝑓 (𝑦) + 𝐷 𝑓 (𝑦) [𝑥 − 𝑦] + 𝛼

2
∥𝑥 − 𝑦∥2 . □

Lemma 3.7 If 𝑓 ∈ ℱ is 𝛽-smooth and 𝑋 is a random variable supported in 𝐾
and 𝑥 = E[𝑋]. Then,

E[ 𝑓 (𝑋) − 𝑓 (𝑥)] ≤ 𝛽

2
E

[
∥𝑋 − 𝑥∥2] .

Proof Let 𝑔(𝑥) = 𝑓 (𝑥) − 𝛽

2 ∥𝑥∥2, which by assumption is concave. Then,

E[ 𝑓 (𝑋) − 𝑓 (𝑥)] = E[𝑔(𝑋) − 𝑔(𝑥)] + 𝛽

2
E

[
∥𝑋 ∥2 − ∥𝑥∥2]

≤ 𝛽

2
E

[
∥𝑋 ∥2 − ∥𝑥∥2] since 𝑔 is concave

=
𝛽

2
E

[
∥𝑋 − 𝑥∥2] . since E[𝑋] = 𝑥

□
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3.3 Scaling properties

A class of problems is defined by the constraint set 𝐾 and the function class in
which the losses lie (see Definition 1.1) as well as constraints on the adversary
(stochastic/non-stochastic) or the noise. Regardless, we hope you agree that
simply changing the scale of the coordinates should not affect the achievable
regret. The following proposition describes how the various constants change
when the coordinates are scaled.

Proposition 3.8 Let 𝑓 : 𝐾 → [0, 1] be convex and twice differentiable. Define
𝑔(𝑦) = 𝑓 (𝑥/𝛾) and 𝐽 = {𝛾𝑥 : 𝑥 ∈ 𝐾}. The following hold:

(1) 𝑔 : 𝐽 → [0, 1] is convex and twice differentiable.
(2) 𝑔′ (𝑦) = 𝑓 ′ (𝑥/𝛾)

𝛾
.

(3) 𝑔′′ (𝑦) = 𝑓 ′′ (𝑥/𝛾)
𝛾2 .

(4) diam(𝐽) = 𝛾 diam(𝐾).

From this we see that the product of the Lipschitz constant and diameter
is invariant under scaling. As is the ratio of strong convexity and smoothness
parameters. You should always check that various results are compatible with
these scaling results in the sense that the regret bound should be invariant to
scale if the assumptions permit scaling.

3.4 Convex functions are nearly Lipschitz

Let 𝑓 : 𝐾 → [0, 1] be a convex function. The example 𝐾 = [0, 1] and
𝑓 (𝑥) = 1 −

√
𝑥 shows that such functions are not always Lipschitz. What is true

is that 𝑓 must be Lipschitz on the interior of 𝐾 in some sense. You should start
by solving the following exercise:

Exercise 3.9 ⋆ Suppose that 𝑓 : R𝑑 → R ∪ {∞} is convex. Show the
following:

(1) Suppose that 𝐴 ⊂ int(dom( 𝑓 )). Then

lip𝐴( 𝑓 ) ≤ sup
𝑥∈𝐴

sup
𝜂∈S𝑑−1

1

𝐷 𝑓 (𝑥) [𝜂] .

(2) Suppose that 𝐴 is a bounded subset of R𝑑 and dom( 𝑓 ) = R𝑑 . Then

lip( 𝑓 ) ≤ sup
𝑥∉𝐴

sup
𝜂∈S𝑑−1

1

𝐷 𝑓 (𝑥) [𝜂] .



3.5 Near-optimality on the interior 29

Proposition 3.10 Suppose that 𝑓 ∈ ℱb and 𝑟 > 0 and 𝑥 + B𝑑𝑟 ⊂ 𝐾 , then

max
𝜂∈S𝑑−1

1

𝐷 𝑓 (𝑥) [𝜂] ≤ 1
𝑟
.

Proof The assumption that 𝑓 is convex and bounded in [0, 1] on 𝐾 shows that
for any 𝜂 ∈ S𝑑−1

1 ,

1 ≥ 𝑓 (𝑥 + 𝑟𝜂) ≥ 𝑓 (𝑥) + 𝐷 𝑓 (𝑥) [𝑟𝜂] ≥ 𝐷 𝑓 (𝑦) [𝑟𝜂] = 𝑟𝐷 𝑓 (𝑦) [𝜂] .

Therefore 𝐷 𝑓 (𝑦) [𝜂] ≤ 1
𝑟

. □

Combining Proposition 3.10 and the solution to Exercise 3.9 yields the
following:

Corollary 3.11 Let 𝑓 ∈ ℱb be convex and suppose that 𝐴 is convex and
𝐴 + B𝑑𝑟 ⊂ 𝐾 . Then lip𝐴( 𝑓 ) ≤ 1

𝑟
.

Corollary 3.12 Suppose that 𝑓 : 𝐾 → [0, 1] is convex and B𝑑𝑟 ⊂ 𝐾 and
𝐾𝜀 = (1 − 𝜀)𝐾 . Then lip𝐾𝜀 ( 𝑓 ) ≤

1
𝜀𝑟

.

3.5 Near-optimality on the interior

The observation that convex functions are Lipschitz on a suitable subset of
the interior of 𝐾 suggests that if we want to restrict our attention to Lipschitz
functions, then we might pretend that the domain of 𝑓 is not 𝐾 but rather a
subset. This idea is only fruitful because bounded convex functions are always
nearly minimised somewhere on the interior in the following sense. Recall the
definition of 𝐾𝜀 from Section 3.1.

Proposition 3.13 Let 𝐾 be a convex body with 0 ∈ int(𝐾) and 𝜀 ∈ (0, 1) and
𝑓 ∈ ℱb. Then

min
𝑦∈𝐾𝜀

𝑓 (𝑦) ≤ inf
𝑦∈𝐾

𝑓 (𝑦) + 𝜀 .

Proof 𝐾𝜀 is a closed subset of int(𝐾), hence compact. Convex functions are
continuous on the interior of their domain, which means that 𝑓 is continuous on
𝐾𝜀 ⊂ int(𝐾) and hence has a minimiser. Let 𝑦 ∈ 𝐾. Then 𝑧 = (1 − 𝜀)𝑦 ∈ 𝐾𝜀
and by convexity, 𝑓 (𝑧) ≤ (1− 𝜀) 𝑓 (𝑦) + 𝜀 𝑓 (0) ≤ 𝑓 (𝑦) + 𝜀. Taking the infimum
over all 𝑦 ∈ 𝐾 completes the proof. □
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3.6 Classical positions and rounding

We make frequent use of certain classical positions of convex bodies.

◦ A convex body 𝐾 is in John’s position if B𝑑1 is the ellipsoid of largest volume
contained in 𝐾 .

◦ A convex body 𝐾 is in Löwner’s position if B𝑑1 is the ellipsoid of smallest
volume that contains 𝐾 .

◦ A convex body 𝐾 is in isotropic position if 1
vol(𝐾 )

∫
𝐾
𝑥𝑥⊤ d𝑥 = 1 and∫

𝐾
𝑥 d𝑥 = 0.

The unifying characteristic of these positions is that for every convex body 𝐾
there exists an affine map 𝑇 : R𝑑 → R𝑑 such that the image 𝑇 (𝐾) is in the
relevant position:

Theorem 3.14 Given X ∈ {John’s, Löwner’s, isotropic} and convex body 𝐾
there exists an affine transformation 𝑇 : R𝑑 → R𝑑 such that 𝑇 (𝐾) is in X
position.

Some of our analysis depends on the constraint set 𝐾 being well rounded. By
this we mean that

B𝑑𝑟 ⊂ 𝐾 ⊂ B𝑑𝑅 ,

where 𝑅/𝑟 is not too large. The following shows that convex bodies in John’s
position are well rounded:

Theorem 3.15 Suppose that 𝐾 is in John’s position. Then

B𝑑1 ⊂ 𝐾 ⊂ B𝑑𝑑 .

Theorem 3.15 is an immediate consequence of John’s theorem (Artstein-
Avidan et al., 2015, Remark 2.1.17). Combining Theorem 3.15 with Theo-
rem 3.14 shows that for any convex body 𝐾 there exists an affine map 𝑇 such
that

B𝑑1 ⊂ 𝑇 (𝐾) ⊂ B𝑑𝑑 . (3.1)

This is less constructive than we would like because even when 𝐾 is represented
by a separation oracle, there is no known procedure for efficiently computing
John’s position. In a moment we discuss how to algorithmically find an affine
mapping 𝑇 such that (3.1) holds approximately. First though, we explain how
such a mapping can be used. Any affine 𝑇 for which (3.1) holds must be
invertible. A learning algorithm designed for rounded constraint sets can be
used on arbitrary constraint sets by first finding a 𝑇 such that (3.1) approximately
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holds. The learner is then instantiated with 𝑇 (𝐾) as a constraint set and proposes
actions (𝑋 ′

𝑡 )𝑛𝑡=1 with 𝑋 ′
𝑡 ∈ 𝑇 (𝐾). The response is𝑌𝑡 = 𝑓𝑡 (𝑇−1 (𝑋 ′

𝑡 )) +𝜀𝑡 . Letting
𝑔𝑡 = 𝑓𝑡 ◦ 𝑇−1, we have

Reg𝑛 = sup
𝑥∈𝐾

𝑛∑︁
𝑡=1

( 𝑓𝑡 (𝑋𝑡 ) − 𝑓𝑡 (𝑥))

= sup
𝑥′∈𝑇 (𝐾 )

𝑛∑︁
𝑡=1

( 𝑓𝑡 (𝑇−1 (𝑋 ′
𝑡 )) − 𝑓𝑡 (𝑇−1 (𝑥′)))

= sup
𝑥′∈𝑇 (𝐾 )

𝑛∑︁
𝑡=1

(𝑔𝑡 (𝑋 ′
𝑡 ) − 𝑔𝑡 (𝑥′)) .

The Lipschitz and smoothness properties of 𝑔𝑡 may be different than 𝑓𝑡 , but
if 𝑓𝑡 is bounded on 𝐾, then 𝑔𝑡 is similarly bounded on 𝑇 (𝐾). Therefore when
assuming losses are in ℱb and you are indifferent to computation cost you
can assume that B𝑑1 ⊂ 𝐾 ⊂ B𝑑

𝑑
. Next we discuss what is possible using a

computationally efficient algorithm.

Rounding algorithms In order to implement the translation we need a procedure
for finding 𝑇 . Let 𝜈𝐾 be the uniform probability measure on 𝐾 and 𝜇 =∫
𝐾
𝑥 d𝜈𝐾 (𝑥) be the center of mass and Σ =

∫
𝐾
(𝑥 − 𝜇) (𝑥 − 𝜇)⊤ d𝜈𝐾 (𝑥) the

moment of inertia of 𝐾. Let iso𝐾 (𝑥) = Σ−1/2 (𝑥 − 𝜇) and 𝐽 = iso𝐾 (𝐾). A
simple calculation shows that

∫
𝐽
𝑥 d𝜈𝐽 (𝑥) = 0 and

∫
𝐽
𝑥𝑥⊤ d𝜈𝐽 (𝑥) = 1. That is,

𝐽 is in isotropic position.

Theorem 3.16 (Theorem 4.1, Kannan et al. 1995) Suppose that 𝐽 is in isotropic
position. Then

B𝑑1 ⊂ 𝐽 ⊂ B𝑑1+𝑑 .

Remark 3.17 Be careful. Our definition of isotropic position is standard in
probability theory while in geometric analysis it is normal to say that 𝐾 is
in isotropic position if

∫
𝐾
𝑥 d𝑥 = 0, vol(𝐾) = 1 and

∫
𝐾
𝑥𝑥⊤ d𝑥 = 𝐿𝐾1 for

some 𝐿𝐾 . The ‘slicing conjecture’ is that 𝐿𝐾 = 𝑂 (1). A major recent result is
that 𝐿𝐾 = 𝑂̃ (1), which means that up to logarithmic scaling factors the two
definitions of isotropic position are the same.

Provided that 𝐾 is suitably represented, then there exist algorithms that find an
affine map 𝑇 in polynomial time such that 𝐽 = 𝑇 (𝐾) is close enough to isotropic
position that B𝑑1 ⊂ 𝐾 ⊂ B𝑑2𝑑 . The procedure is based on estimating the center
of mass and moment of inertia of 𝐾 using uniform samples and estimating the
corresponding affine map 𝑇 defined above (Lovász and Vempala, 2006).
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3.7 Extension

Some of the algorithms presented in this book are only defined for unconstrained
problems where 𝐾 = R𝑑 . Furthermore, techniques designed for handling
constraints such as self-concordant barriers introduce complexity and dimension-
dependent constants into the analysis. One way to mitigate these problems is
to use an algorithm designed for unconstrained bandit convex optimisation
on an extension of the loss function(s). An extension of a convex function
𝑓 : R𝑑 → R ∪ {∞} with 𝐾 = dom( 𝑓 ) is another convex function 𝑒 : R𝑑 → R
such that

𝑒(𝑥) = 𝑓 (𝑥) for all 𝑥 ∈ 𝐾 .

Sometimes no such extension exists. For example, the function defined by

𝑓 (𝑥) =
{

1 −
√
𝑥 if 𝑥 ≥ 0

∞ if 𝑥 < 0

cannot be extended to a convex function with domain R. When 𝑓 is Lipschitz
on its domain then an extension to R𝑑 is always possible.

Proposition 3.18 Suppose that 𝑓 : R𝑑 → R ∪ {∞} is convex and lip( 𝑓 ) < ∞.
Then there exists a convex function 𝑒 : R𝑑 → R such that:

(1) 𝑒(𝑥) = 𝑓 (𝑥) for all 𝑥 ∈ dom( 𝑓 ); and
(2) lip(𝑒) = lip( 𝑓 ).

Proof ( ) To keep things simple, let us assume that dom( 𝑓 ) has nonempty
interior (but see Exercise 3.19). The idea is to define 𝑒 as the supremum of all
tangent hyperplanes to 𝑓 in int(dom( 𝑓 )). Define

𝑒(𝑥) = sup
𝑦∈int(dom( 𝑓 ) )

( 𝑓 (𝑦) + 𝐷 𝑓 (𝑦) [𝑥 − 𝑦]) .

Note that no convex extension can take smaller a smaller value than this by
convexity so this 𝑒 is the minimal extension. We leave it as an exercise to
establish the claimed properties of 𝑒. □

Exercise 3.19 ( ) ⋆� Prove Proposition 3.18. We suggest you start by
assuming dom( 𝑓 ) has nonempty interior. In case dom( 𝑓 ) has no interior you
should first extend 𝑓 to the affine hull of the relative interior and then extend
the extension to the whole space. You may find it useful to use the fact that for
𝑦 ∈ int(dom( 𝑓 )), 𝐷 𝑓 (𝑦) [ℎ] = sup𝑔∈𝜕 𝑓 (𝑦) ⟨𝑔, ℎ⟩.

The extension in Proposition 3.18 has the limitation that it cannot be evaluated
in an unbiased way with stochastic oracle access to 𝑓 . The reason is that to even
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approximate 𝑒 at some point 𝑥 ∉ dom( 𝑓 ) you need to solve an optimisation
problem that may require you to evaluate 𝑓 at many points in 𝐾. The next
proposition shows there exists an extension that can be evaluated at 𝑥 ∉ dom( 𝑓 )
using only a single evaluation of 𝑓 .

Proposition 3.20 Suppose that B𝑑𝑟 ⊂ 𝐾 and 𝑓 ∈ ℱb is a function with
dom( 𝑓 ) = 𝐾 and lip( 𝑓 ) < ∞. Let 𝑚 be a real value such that −𝐷 𝑓 (𝑦) [−𝑦] −
𝑓 (𝑦) ≤ 𝑚 for all 𝑦 ∈ 𝐾 . Let 𝜋 be the Minkowski functional of 𝐾 and

𝑒(𝑥) = max(1, 𝜋(𝑥)) 𝑓
(

𝑥

max(1, 𝜋(𝑥))

)
+ 𝑚(max(1, 𝜋(𝑥)) − 1) .

The function 𝑒 satisfies the following:

(1) 𝑒(𝑥) = 𝑓 (𝑥) for all 𝑥 ∈ 𝐾 .
(2) 𝑒 is convex.
(3) lip(𝑒) ≤ 𝑚

𝑟
+ 1
𝑟
+ lip( 𝑓 ).

(4) For all 𝑥 ∉ 𝐾 , 𝑒(𝑥/𝜋(𝑥)) ≤ 𝑒(𝑥).

Remark 3.21 When 𝐾 ⊂ B𝑑
𝑅

, then for any 𝑦 ∈ 𝐾 ,

−𝐷 𝑓 (𝑦) [𝑦] − 𝑓 (𝑦) ≤ ∥𝑦∥ lip( 𝑓 ) ≤ 𝑅 lip( 𝑓 ) ,

which shows that lip(𝑒) = 𝑂 ( 𝑅
𝑟

lip( 𝑓 )).

Compared to the extension in Proposition 3.18, the extension above has the
drawback that the Lipschitz constant depends on 𝐾 as well as the Lipschitz
constant of 𝑓 . On the other hand, the extension above can be evaluated at 𝑥 by
computing 𝜋(𝑥) and evaluating 𝑓 at 𝑥/max(1, 𝜋(𝑥)), which means the extension
can be evaluated at 𝑥 using a single query to 𝑓 . By employing the rounding
procedure in Section 3.6 you can always ensure that 𝑅/𝑟 = 𝑂 (𝑑) in which case
the Lipschitz constant of the extension in Proposition 3.20 is a factor of 𝑂 (𝑑)
worse than that of Proposition 3.18.

Intuition Let 𝑥 ∈ 𝜕𝐾. By Lemma 3.3(1), the Minkowski functional is ho-
mogeneous, which means that for 𝑡 ≥ 1 𝑒(𝑡𝑥) = 𝑡 𝑓 (𝑥) + 𝑚(𝑡 − 1) is a linear
function. So 𝑒 is defined outside of 𝐾 by glueing together rays emanating from
points 𝑥 ∈ 𝜕𝐾. The most challenging part of the proof of Proposition 3.20 is
establishing convexity.

Proof of Proposition 3.20 Since 𝑓 is only defined on 𝐾 the directional deriva-
tive 𝐷 𝑓 (𝑥) [·] may not be well-defined for 𝑥 ∈ 𝜕𝐾. To avoid this issue, we
define 𝑓 outside of 𝐾 by the extension defined in Proposition 3.18, which exists
because 𝑓 is Lipschitz. With this modification 𝐷 𝑓 (𝑥) [·] is guaranteed to exist
everywhere. Abbreviate 𝜋∧ (𝑥) = max(1, 𝜋(𝑥)). Part (1) follows immediately
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from the fact that for 𝑥 ∈ 𝐾, 𝜋(𝑥) ≤ 1 and therefore 𝜋∧ (𝑥) = 1. Moving
to part (2). Define 𝑔(𝑧, 𝜆) = 𝜆 𝑓 (𝑧/𝜆), which is called the perspective of 𝑓
and according to Boyd and Vandenberghe (2004, §2.3.3) is jointly convex on
R𝑑 × (0,∞). Let 𝑧 ∈ R𝑑 and 𝜆 ≥ 𝜋∧ (𝑧). Then,

𝑔(𝑧, 𝜆)
(a)

≥ 𝑔(𝑧, 𝜋∧ (𝑧)) +
d𝑔(𝑧, 𝜃)

d𝜃

���
𝜃=𝜋∧ (𝑧)

(𝜆 − 𝜋∧ (𝑧))

(b)

= 𝑔(𝑧, 𝜋∧ (𝑧)) +
(
𝑓

(
𝑧

𝜋∧ (𝑧)

)
+ 𝐷 𝑓

(
𝑧

𝜋∧ (𝑧)

) [
−𝑧
𝜋∧ (𝑧)

] )
(𝜆 − 𝜋∧ (𝑧))

(c)

≥ 𝑔(𝑧, 𝜋∧ (𝑧)) − 𝑚 (𝜆 − 𝜋∧ (𝑧)) , (3.2)

where in (a) the derivative is the right-derivative and the inequality follows
from convexity of 𝑔, (b) by the chain rule and the definition of 𝑔 and (c) by
the assumptions on 𝑚 in the proposition statement and because 𝑧/𝜋∧ (𝑧) ∈ 𝐾.
Let 𝑥, 𝑦 ∈ R𝑑 and 𝑝 ∈ (0, 1) and 𝑧 = 𝑝𝑥 + (1 − 𝑝)𝑦. By definition,

𝑒(𝑧) = 𝜋∧ (𝑧) 𝑓
(

𝑧

𝜋∧ (𝑧)

)
+ 𝑚(𝜋∧ (𝑧) − 1)

= 𝑔(𝑧, 𝜋∧ (𝑧)) + 𝑚(𝜋∧ (𝑧) − 1)
(a)

≤ 𝑔(𝑧, 𝑝𝜋∧ (𝑥) + (1 − 𝑝)𝜋∧ (𝑦)) + 𝑚 [𝑝𝜋∧ (𝑥) + (1 − 𝑝)𝜋∧ (𝑦) − 1]
(b)

≤ 𝑝𝑔(𝑥, 𝜋∧ (𝑥)) + (1 − 𝑝)𝑔(𝑦, 𝜋∧ (𝑦)) + 𝑚 [𝑝𝜋∧ (𝑥) + (1 − 𝑝)𝜋∧ (𝑦) − 1]
= 𝑝𝑒(𝑥) + (1 − 𝑝)𝑒(𝑦) ,

where (a) follows from (3.2) with 𝜆 = 𝑝𝜋∧ (𝑥) + (1 − 𝑝)𝜋∧ (𝑦) ≥ 𝜋∧ (𝑧) by
convexity of 𝜋∧. (b) follows from joint convexity of 𝑔 and because 𝑧 = 𝑝𝑥+ (1−
𝑝)𝑦. Therefore 𝑒 is convex. Next we prove part (3). Let ℎ ∈ S𝑑−1

1 and 𝑥 ∉ 𝐾,
which means that 𝜋∧ (𝑥) = 𝜋(𝑥) > 1. By Lemma 3.3(6), 𝐷𝜋(𝑥) [ℎ] = ⟨𝜃, ℎ⟩ for
some 𝜃 ∈ 𝐾◦. Because polarity reverses inclusion (Proposition 3.1) and B𝑑𝑟 ⊂ 𝐾 ,
𝐾◦ ⊂ B𝑑1/𝑟 and therefore ∥𝜃∥ ≤ 1/𝑟 . Since 𝑓 is convex and defined everywhere,
Rockafellar (1970, Theorem 23.4) says that 𝐷 𝑓 (𝑥) [ℎ] = sup𝑔∈𝜕 𝑓 (𝑥 ) ⟨𝑔, ℎ⟩,
which means that 𝐷 𝑓 (𝑥) [ℎ1 + ℎ2] ≤ 𝐷 𝑓 (𝑥) [ℎ1] + 𝐷 𝑓 (𝑥) [ℎ2] for any ℎ1, ℎ2 ∈
R𝑑 . Combining this with the assumption that lip( 𝑓 ) ≤ 𝑚 shows that

𝐷𝑒(𝑥) [ℎ] = ⟨𝜃, ℎ⟩
(
𝑚 + 𝑓

(
𝑥

𝜋(𝑥)

))
+ 𝐷 𝑓

(
𝑥

𝜋(𝑥)

) [
ℎ − 𝑥 ⟨𝜃, ℎ⟩

𝜋(𝑥)

]
≤ ∥𝜃∥

����𝑚 + 𝑓

(
𝑥

𝜋(𝑥)

)
+ 𝐷 𝑓

(
𝑥

𝜋(𝑥)

) [
−𝑥 ⟨𝜃, ℎ⟩
𝜋(𝑥)

] ���� + lip( 𝑓 ) .

By assumption and convexity,

0 ≤ 𝑚 + 𝑓

(
𝑥

𝜋(𝑥)

)
+ 𝐷 𝑓

(
𝑥

𝜋(𝑥)

) [
− 𝑥

𝜋(𝑥)

]
≤ 𝑚 + 𝑓 (0) ≤ 𝑚 + 1 ,
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which when combined with the fact that ∥𝜃∥ ≤ 1/𝑟 shows that 𝐷𝑒(𝑥) [ℎ] ≤
𝑚 + 𝑚/𝑟 + 1/𝑟 . The claim now follows from Exercise 3.9 and the fact that 𝐾 is
bounded. For part (4), since 𝑥 ∉ 𝐾 we have

𝑒(𝑥) = 𝜋(𝑥) 𝑓
(
𝑥

𝜋(𝑥)

)
+ 𝑚(𝜋(𝑥) − 1) ≥ 𝑓

(
𝑥

𝜋(𝑥)

)
= 𝑒

(
𝑥

𝜋(𝑥)

)
,

where we used the fact that 𝑥/𝜋(𝑥) ∈ 𝐾 so that 𝑒(𝑥/𝜋(𝑥)) = 𝑓 (𝑥/𝜋(𝑥)). □

Proposition 3.20 is only directly applicable when 𝑓 is Lipschitz. The next
proposition provides an extension of 𝑓 restricted to a subset of its domain:

Proposition 3.22 Suppose that 𝑓 ∈ ℱb and B𝑑𝑟 ⊂ 𝐾 . Let 𝜋 be the Minkowski
functional of 𝐾 and 𝜀 ∈ (0, 1) and 𝜋∧ (𝑥) = max(1, 𝜋(𝑥)/(1 − 𝜀)) and

𝑒(𝑥) = 𝜋∧ (𝑥) 𝑓
(

𝑥

𝜋∧ (𝑥)

)
+ 1 − 𝜀

𝜀
(𝜋∧ (𝑥) − 1) .

Then, the following hold:

(1) 𝑒(𝑥) = 𝑓 (𝑥) for all 𝑥 ∈ 𝐾𝜀 = {𝑥 ∈ 𝐾 : 𝜋(𝑥) ≤ 1 − 𝜀}.
(2) 𝑒 is convex.

(3) lip(𝑒) ≤ 2
𝜀 (1−𝜀)𝑟 .

(4) For all 𝑥 ∉ 𝐾𝜀 , 𝑒(𝑥/𝜋∧ (𝑥)) ≤ 𝑒(𝑥).

Proof Let 𝑦 ∈ 𝐾𝜀 and 𝑧 = 𝑦/(1 − 𝜀) ∈ 𝐾, which means that 𝑧 − 𝑦 = 𝜀
1−𝜀 𝑦.

Combining this with the fact that 𝑓 ∈ ℱb yields

1 ≥ 𝑓 (𝑧) 𝑓 ∈ ℱb

≥ 𝑓 (𝑦) + 𝐷 𝑓 (𝑦) [𝑧 − 𝑦] 𝑓 convex

= 𝑓 (𝑦) + 𝜀

1 − 𝜀 𝐷 𝑓 (𝑦) [𝑦] def. of 𝑧

≥ 𝑓 (𝑦) + 𝜀

1 − 𝜀 (−𝐷 𝑓 (𝑦) [−𝑦]) ℎ ↦→ 𝐷 𝑓 (·) [ℎ] subadditive

≥ 𝜀

1 − 𝜀 (−𝐷 𝑓 (𝑦) [−𝑦] − 𝑓 (𝑦)) . 𝑓 ∈ ℱb

Rearranging shows that for all 𝑦 ∈ 𝐾𝜀 , −𝐷 𝑓 (𝑦) [−𝑦] − 𝑓 (𝑦) ≤ 1−𝜀
𝜀

≜ 𝑚. The
claim now follows by applying Proposition 3.20 to 𝐾𝜀 , which by definition
has 𝐵 (1−𝜀)𝑟 ⊂ 𝐾𝜀 . Hence, by Corollary 3.12, lip𝐾𝜀 ( 𝑓 ) ≤ 1

𝜀𝑟
, which by
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Proposition 3.20 means the Lipschitz constant lip(𝑒) is bounded by

lip(𝑒) ≤ 𝑚 + 1
(1 − 𝜀)𝑟 + 1

(1 − 𝜀)𝑟 + lip𝐾𝜀 ( 𝑓 )

≤
1−𝜀
𝜀

+ 1
(1 − 𝜀)𝑟 + 1

(1 − 𝜀)𝑟 + 1
𝑟𝜀

=
2

𝜀(1 − 𝜀)𝑟 . □

3.8 Smoothing

−2 −1 0 1 2
0

0.2

0.4

0.6

Figure 3.2: 𝜙 in dimension
one.

Let 𝜙 : R𝑑 → R be the twice differentiable
function given by

𝜙(𝑥) = 1
𝐶

(
1 − ∥𝑥∥2

)3
1B𝑑1

(𝑥) with

𝐶 =

∫
B𝑑1

(
1 − ∥𝑥∥2

)3
d𝑥 .

Note that 𝜙 is the density of a probability measure on R𝑑 that is supported on
B𝑑1 . Given 𝜀 > 0, let

𝜙𝜀 (𝑥) = 𝜀−𝑑𝜙(𝑥/𝜀) ,

which by a change of measure is also a probability density, this time supported
on B𝑑𝜀 .

Proposition 3.23 Suppose that 𝑓 : R𝑑 → R ∪ {∞} is convex and lip( 𝑓 ) < ∞
and let 𝑔 = 𝑓 ∗ 𝜙𝜀 with ∗ the convolution, which is defined on dom(𝑔) = {𝑥 ∈
R𝑑 : 𝑥 + B𝑑𝜀 ⊂ cl(dom( 𝑓 ))}. Then the following hold:

(1) 𝑔 is twice differentiable on int(dom(𝑔)).
(2) lip(𝑔) ≤ lip( 𝑓 ).
(3) 𝑔 is smooth: ∥𝑔′′ (𝑥)∥ ≤ (𝑑+1) (𝑑+6) lip( 𝑓 )

𝜀
for all 𝑥 ∈ int(dom(𝑔)).

(4) max𝑥∈dom(𝑔) | 𝑓 (𝑥) − 𝑔(𝑥) | ≤ 𝜀 lip( 𝑓 ).

Proof Part (1) follows by writing out the definition, a change of variable and
by exchanging limits and integrals. This is a good technical exercise. Part (2)
is also left as an (easy) exercise. For part (3), the constant 𝐶 can be calculated
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by integrating in polar coordinates:

𝐶 =

∫
B𝑑1

(
1 − ∥𝑥∥2

)3
d𝑥

= 𝑑 vol(B𝑑1 )
∫ 1

0
𝑟𝑑−1

(
1 − 𝑟2

)3
d𝑟 Proposition A.2

=
48 vol(B𝑑1 )

(𝑑 + 2) (𝑑 + 4) (𝑑 + 6) .

By convexity of the spectral norm and naive calculation:

∥𝑔′′ (𝑥)∥ =




∫

B𝑑𝜀
𝑓 (𝑥 + 𝑢)𝜙′′𝜀 (𝑢) d𝑢






(a)

=





∫
B𝑑𝜀

( 𝑓 (𝑥 + 𝑢) − 𝑓 (𝑥))𝜙′′𝜀 (𝑢) d𝑢






(b)

≤ 𝜀 lip( 𝑓 )
∫
B𝑑𝜀



𝜙′′𝜀 (𝑢)

 d𝑢

(c)

=
lip( 𝑓 )
𝜀

∫
B𝑑1

∥𝜙′′ (𝑢)∥ d𝑢

(d)

=
lip( 𝑓 )
𝐶𝜀

∫
B𝑑1



24𝑢𝑢⊤ (1 − ∥𝑢∥2) − 61(1 − ∥𝑢∥2)2

 d𝑢

(e)

≤ lip( 𝑓 )
𝐶𝜀

∫
B𝑑1

(

24𝑢𝑢⊤ (1 − ∥𝑢∥2)


 + 6



1(1 − ∥𝑢∥2)2

) d𝑢

(f)

=
𝑑 vol(B𝑑1 ) lip( 𝑓 )

𝐶𝜀

∫ 1

0
𝑟𝑑−1 [

24𝑟2 (1 − 𝑟2) + 6(1 − 𝑟2)2] d𝑟

=
(𝑑 + 1) (𝑑 + 6) lip( 𝑓 )

𝜀
,

where (a) follows because
∫
B𝑑𝜀
𝜙′′𝜀 (𝑢) d𝑢 = 0. (b) since 𝑓 is Lipschitz and the

spectral norm is convex (or triangle inequality). (c) and (d) by a change of mea-
sure and differentiating. (e) the triangle inequality and (f) by Proposition A.2
and because ∥𝑢𝑢⊤∥ = ∥𝑢∥2. For part (4), since 𝑓 is Lipschitz,

|𝑔(𝑥) − 𝑓 (𝑥) | =
����∫

B𝑑𝜀
( 𝑓 (𝑥 + 𝑢) − 𝑓 (𝑥)) 𝜙𝜀 (𝑢) d𝑢

����
≤ lip( 𝑓 )

∫
B𝑑𝜀

∥𝑢∥ 𝜙𝜀 (𝑢) d𝑢

≤ 𝜀 lip( 𝑓 ) . □

Exercise 3.24 ⋆ Prove Proposition 3.23(1)(2).
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3.9 Computation

There are a variety of standard operations that are components in (bandit) convex
optimisation algorithms. For example, projections and positioning a convex
body 𝐾 into isotropic/John’s position.

Standard operations We are interested in the following operations:

◦ mem𝐾 is the membership oracle: mem𝐾 (𝑥) = 1𝐾 (𝑥).
◦ sep𝐾 is a separation oracle: sep𝐾 (𝑥) = ⊥ if 𝑥 ∈ 𝐾 and otherwise sep𝐾 (𝑥) =
𝐻 for some half-space 𝐻 with 𝐾 ⊂ 𝐻.

◦ lin𝐾 is the linear optimisation oracle: lin𝐾 (𝑐) = arg min𝑥∈𝐾 ⟨𝑐, 𝑥⟩.
◦ cvx𝐾 is the function with cvx𝐾 ( 𝑓 ) = arg min𝑥∈𝐾 𝑓 (𝑥).
◦ proj𝐾,𝑁 is the function proj𝐾,𝑁 (𝑦) = arg min𝑥∈𝐾 𝑁 (𝑥 − 𝑦) where 𝑁 is a

norm.
◦ iso𝐾 is the affine map such that {iso𝐾 (𝑥) : 𝑥 ∈ 𝐾} is istropic.
◦ john𝐾 is the affine map such that {john𝐾 (𝑥) : 𝑥 ∈ 𝐾} is in John’s position.
◦ samp𝐾 is the oracle that returns a point sampled from the uniform distribution

on 𝐾 .
◦ grad 𝑓 returns the gradient of a function 𝑓 : R𝑑 → R.

Table 3.2 provides complexity bounds for computing one oracle from others.
The bounds ignore logarithmic factors and are given in terms of the number of
arithmetic operations as well as calls to other oracles. For example, the table
claims that linear optimisation can be computed in 𝑂̃ (𝑑3) arithmetic operations
and 𝑂̃ (𝑑) calls to a separation oracle for 𝐾. More importantly, we are only
claiming the relevant quantity can be computed approximately. Moreover, the
oracles used as inputs are permitted to be approximate as well. We badly want
to avoid handling approximation errors for computations in this book. We will
assume exact computation in our analysis and leave it to you to carefully consider
the approximation error if this concerns you. For some of the oracles it is not
even obvious what metric should be used to define the approximation error.
That too, we leave to you to figure out. Usually the reference in the table below
contains what you need to know.

Exercise 3.25 ⋆ Prove the complexity bound for all entries in Table 3.2
without a reference.

The operations can be chained. For example, when 𝐾 is a polytope, then
iso𝐾◦ can be computed in 𝑂̃ (𝑚𝑑5.5 + 𝑑6.5).
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op complexity reference

mem𝐾 𝑚𝑑

mem𝐾 𝑣2.37† Jiang et al. 2020

mem𝐾◦ 1 + lin𝐾

sep𝐾 𝑚𝑑

sep𝐾 𝑑 mem𝐾 Lee et al. 2018

lin𝐾 𝑑3 + 𝑑2 mem𝐾 Lee et al. 2015 Lee et al. 2018

lin𝐾 𝑑3 + 𝑑 sep𝐾 Lee et al. 2015

lin𝐾 𝑚2.37† Jiang et al. 2020

lin𝐾 𝑣𝑑

cvx𝐾 𝑑3 + 𝑑 grad 𝑓 +𝑑2 mem𝐾 Lee et al. 2015 Lee et al. 2018

cvx𝐾 𝑑3 + 𝑑 grad 𝑓 +𝑑 sep𝐾 Lee et al. 2015

cvx𝐾 𝑑3 + 𝑑 grad 𝑓 +𝑚𝑑2 Lee et al. 2015

proj𝐾,𝑁 𝑑3 + 𝑑 grad𝑁 +𝑑2 mem𝐾

proj𝐾,𝑁 𝑑3 + 𝑑 grad𝑁 +𝑑 sep𝐾

proj𝐾,𝑁 𝑑3 + 𝑑 grad𝑁 +𝑚𝑑2

iso𝐾 𝑑4 + 𝑑4 mem𝐾 Lovász and Vempala 2006

iso𝐾 𝑑3 + 𝑑 samp𝐾 Lovász and Vempala 2006

john𝐾 𝑚3.5 Khachiyan and Todd 1993

john𝐾◦ 𝑣3.5 Khachiyan and Todd 1993

† these bounds would improve to 𝑚2.055 and 𝑣2.055 if matrix multiplication algorithms improved to their
theoretical limits (Jiang et al., 2020).

Table 3.2: Computation costs for standard operations. In rows where 𝑚 appears
we assume that 𝐾 = {𝑥 : 𝐴𝑥 ≤ 𝑏} with 𝐴 ∈ R𝑚×𝑑 . In rows where 𝑣 appears we
assume that 𝐾 = conv(𝑥1, . . . , 𝑥𝑣). Since 𝐾 is assumed to be a convex body
𝑚 = Ω(𝑑) and 𝑣 = Ω(𝑑).

3.10 Notes

3.i: Versions of some or all the properties used here have been exploited in a
similar fashion by Flaxman et al. (2005); Bubeck et al. (2017); Lattimore (2020)
and others.

3.ii: Occasionally it would be convenient to be able to extend 𝛽-smooth
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functions while preserving 𝛽-smoothness to all of R𝑑 . Curiously, this is not
possible (Drori, 2018).

3.iii: The extension in Proposition 3.20 is due to Fokkema et al. (2024). A
related extension was proposed by Mhammedi (2022), who also use an extension
based on the ‘projection’ 𝑥/𝜋(𝑥) but assume knowledge of the gradient of 𝑓 at
this point.



4
Bisection in one dimension

We start with a simple but instructive algorithm for the one-dimensional
stochastic setting. The next assumption is considered global throughout the
chapter:

Assumption 4.1 The following hold:

(1) 𝑑 = 1 and 𝐾 is a nonempty interval; and
(2) the setting is stochastic: 𝑓𝑡 = 𝑓 for all 𝑡; and
(3) the loss function is Lipschitz: 𝑓 ∈ ℱl.

Like many algorithms for convex bandits, the bisection method is based on a
classical technique for deterministic convex optimisation. The algorithm in this
chapter only works in the stochastic 1-dimensional setting but has the advantages
that it can be implemented trivially and is nearly minimax optimal. The ideas are
also quite instructive and highlight some of the challenges when moving from
deterministic to noisy zeroth-order optimisation. The main theoretical result is
a proof that under Assumption 4.1 the regret of Algorithm 4.3 is bounded with
high probability by 𝑂̃ (

√
𝑛).

4.1 Bisection method without noise

We start by considering the noise free setting, which illustrates the main idea.
The bisection method for deterministic zeroth-order convex optimisation is very
simple.

Theorem 4.2 Let (𝐾𝑘)∞𝑘=1 be the sequence of sets produced by Algorithm 4.1.

41
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1 l e t 𝐾1 = 𝐾

2 f o r 𝑘 = 1 to ∞ :
3 l e t 𝑥 = min𝐾𝑘 and 𝑦 = max𝐾𝑘
4 l e t 𝑥0 = 2

3𝑥 +
1
3 𝑦 , 𝑥1 = 1

3𝑥 +
2
3 𝑦

5 i f 𝑓 (𝑥1) ≥ 𝑓 (𝑥0) : then 𝐾𝑘+1 = [𝑥, 𝑥1]
6 e l s e : 𝐾𝑘+1 = [𝑥0, 𝑦]

Algorithm 4.1: Bisection method without noise

Then,

max
𝑥∈𝐾𝑘

𝑓 (𝑥) ≤ min
𝑦∈𝐾

𝑓 (𝑦) +
(

2
3

) 𝑘−1
vol(𝐾) for all 𝑘 ≥ 1 ,

where vol(𝐾) is the width of the interval 𝐾 .

Proof Suppose that 𝑥 ∈ 𝐾𝑘 and 𝑥 ∉ 𝐾𝑘+1. By convexity you im-
mediately have that 𝑓 (𝑥) ≥ min𝑦∈𝐾𝑘+1 𝑓 (𝑦). Therefore by induction,
min𝑥∈𝐾𝑘 𝑓 (𝑥) = min𝑥∈𝐾 𝑓 (𝑥) for all 𝑘 . By construction of the algorithm
vol(𝐾𝑘) = (2/3)𝑘−1 vol(𝐾). Since 𝑓 is Lipschitz by assumption, it follows that

max
𝑥∈𝐾𝑘

𝑓 (𝑥) ≤ max
𝑥∈𝐾𝑘

min
𝑦∈𝐾𝑘

( 𝑓 (𝑦) + |𝑥 − 𝑦 |)

≤ min
𝑦∈𝐾𝑘

𝑓 (𝑦) + vol(𝐾𝑘)

= min
𝑦∈𝐾

𝑓 (𝑦) +
(

2
3

) 𝑘−1
vol(𝐾) ,

which completes the proof. □

4.2 Bisection method with noise

The generalisation of the bisection method to noisy optimisation is surprisingly
subtle. While Algorithm 4.1 divides the current interval into three blocks, in the
noisy setting it turns out that four blocks are necessary. The situation is best
illustrated by the example illustrated in Figure 4.1. Suppose you have noisy
(and therefore only approximate) estimates of the loss at all of 𝑥 ∈ {0, 1, 2, 3}.
Notice how all three convex functions 𝑓 , 𝑔 and ℎ have very similar values
at these points but the minimiser could be in any of (0, 1), (1, 2) or (2, 3).
Hence it will take many samples to identify which function is the truth. Even



4.2 Bisection method with noise 43

0 1 2 3

f

g

h

Figure 4.1

worse, if the real function is 𝑓 , then you are paying considerable regret while
trying to identify the region where the minimiser lies. The example illustrates
the problem of exploring efficiently. A good exploration strategy will ensure
that if the regret is large, then the information gain about the identity/location
of a near-minimiser is also large. The exploration strategy in Figure 4.1 is
not good. The example also illustrates the challenges of generalising methods
designed for deterministic zeroth-order optimisation to stochastic zeroth-order
optimisation. Fundamentally the problem is one of stability. Algorithm 4.1 is
not a stable algorithm in the sense that small perturbation of its observations
can dramatically change its behaviour.

We decompose the bisection method for stochastic convex optimisation into
two algorithms. The first accepts as input an interval and interacts with the loss
for a number of rounds. Eventually it outputs a new interval such that with high
probability all of the following hold:

◦ The minimiser of the loss is contained in the output interval.
◦ The new interval is three quarters as large as the input interval.
◦ The regret suffered during the interaction is controlled.
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1 def bisect (𝐾 = [𝑥, 𝑦] , 𝑛 , 𝛿 ∈ (0, 1) ) :
2 𝑥0 = 3

4𝑥 +
1
4 𝑦 , 𝑥1 = 1

2𝑥 +
1
2 𝑦 , 𝑥2 = 1

4𝑥 +
3
4 𝑦

3 f o r 𝑡 = 1 to 𝑛 :

4 𝑐𝑡 =

√︂
24
𝑡

log
(

4𝑛
3𝛿

)
5 l e t 𝑋𝑡 = 𝑥𝑡 mod 3 and o b s e r v e 𝑌𝑡 = 𝑓 (𝑋𝑡 ) + 𝜀𝑡
6 i f 𝑡 ≡ 0 mod 3 :
7 l e t 𝑓𝑡 (𝑥𝑘) = 3

𝑡

∑𝑡
𝑢=1 1(𝑢 ≡ 𝑘 mod 3)𝑌𝑢 wi th 𝑘 ∈ {0, 1, 2}

8 i f 𝑓𝑡 (𝑥2) − 𝑓𝑡 (𝑥1) ≥ 𝑐𝑡 : re turn [𝑥, 𝑥2]
9 i f 𝑓𝑡 (𝑥0) − 𝑓𝑡 (𝑥1) ≥ 𝑐𝑡 : re turn [𝑥0, 𝑦]

10 re turn [𝑥, 𝑦]

Algorithm 4.2: Bisection episode

Proposition 4.3 Let [𝑧, 𝑤] be the interval returned by the algorithm and

Δ =
1
3
[ 𝑓 (𝑥0) + 𝑓 (𝑥1) + 𝑓 (𝑥2)] − min

𝑥∈𝐾
𝑓 (𝑥) .

Suppose that Δ > 0. Then, with probability at least 1 − 𝛿 the following both
hold:

(1) The interval [𝑧, 𝑤] returned by the algorithm satisfies

min
𝑥∈[𝑧,𝑤 ]

𝑓 (𝑥) = min
𝑥∈𝐾

𝑓 (𝑥).

(2) The number of queries to the zeroth-order oracle is at most

3 + 384
Δ2 log

(
4𝑛
3𝛿

)
.

Proof By convexity, max( 𝑓 (𝑥0), 𝑓 (𝑥2)) ≥ 𝑓 (𝑥1). Assume without loss of
generality for the remainder of the proof that 𝑓 (𝑥2) ≥ 𝑓 (𝑥0) and let 𝜃 =

𝑓 (𝑥2) − 𝑓 (𝑥1). Let 𝐺 = 𝐺01 ∩ 𝐺21 with

𝐺01 =
⋂
𝑡∈𝐼

{�� 𝑓𝑡 (𝑥0) − 𝑓𝑡 (𝑥1) − 𝑓 (𝑥0) + 𝑓 (𝑥1)
�� ≤ 𝑐𝑡 } and

𝐺21 =
⋂
𝑡∈𝐼

{�� 𝑓𝑡 (𝑥2) − 𝑓𝑡 (𝑥1) − 𝑓 (𝑥2) + 𝑓 (𝑥1)
�� ≤ 𝑐𝑡 } ,

where 𝐼 = {1 ≤ 𝑡 ≤ 𝑛 : 𝑡 ≡ 0 mod 3}. These are the events that 𝑓𝑡 (𝑥0) − 𝑓𝑡 (𝑥1)
is a reasonable approximation of 𝑓 (𝑥0) − 𝑓 (𝑥1) for all rounds 𝑡 ∈ 𝐼 and similarly
for 𝑓𝑡 (𝑥2) − 𝑓𝑡 (𝑥1).
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Exercise 4.4 ⋆ Use Theorem B.16 and a union bound to show that P(𝐺) ≥
1 − 𝛿.

Suppose now that 𝐺 holds. We claim that 𝜃 ≥ 1
2Δ. To reduce clutter,

assume without loss of generality that 𝑓 (𝑥★) = 0. Suppose we can show that
𝑓 (𝑥0) + 𝑓 (𝑥1) + 𝑓 (𝑥2) ≤ 6𝜃. Then

Δ =
1
3
[ 𝑓 (𝑥0) + 𝑓 (𝑥1) + 𝑓 (𝑥2)] − 𝑓 (𝑥★) ≤ 2𝜃 ,

which shows that 𝜃 ≥ 1
2Δ as required. Proving that 𝑓 (𝑥0) + 𝑓 (𝑥1) + 𝑓 (𝑥2) ≤ 6𝜃

is a tedious case-based analysis depending on the interval containing 𝑥★. To
begin, convexity of 𝑓 and the assumption that 𝑓 (𝑥2) ≥ 𝑓 (𝑥0) implies that 𝑥★
can be chosen in [𝑥, 𝑥2].

Case 1: [𝑥★ ∈ [𝑥, 𝑥0]]. Let 𝜆 ∈ [0, 1] be such that 𝑥1 = 𝜆𝑥2 + (1−𝜆)𝑥★. Then
𝑥1 = 𝜆𝑥2 + (1−𝜆)𝑥★ ≥ 𝜆𝑥2 + (1−𝜆)𝑥 and therefore 𝜆 ≤ (𝑥1 − 𝑥)/(𝑥2 − 𝑥) = 2

3 .
By convexity of 𝑓 ,

𝑓 (𝑥1) = 𝑓 (𝜆𝑥2 + (1 − 𝜆)𝑥★) Definition of 𝜆
≤ 𝜆 𝑓 (𝑥2) + (1 − 𝜆) 𝑓 (𝑥★) Convexity of 𝑓
= 𝜆 𝑓 (𝑥2) Since 𝑓 (𝑥★) = 0

≤ 2
3
𝑓 (𝑥2) Since 𝜆 ≤ 2

3

=
2
3
𝑓 (𝑥1) +

2
3
𝜃 . Definition of 𝜃

Rearranging shows that 𝑓 (𝑥1) ≤ 2𝜃. Similarly, 𝑓 (𝑥0) ≤ 1
2 𝑓 (𝑥1) ≤ 𝜃. Finally,

by definition, 𝑓 (𝑥2) = 𝑓 (𝑥1) + 𝜃 ≤ 3𝜃. Summing the bounds we have 𝑓 (𝑥0) +
𝑓 (𝑥1) + 𝑓 (𝑥2) ≤ 𝜃 + 2𝜃 + 3𝜃 = 6𝜃.
Case 2: [𝑥★ ∈ [𝑥0, 𝑥1]]. The argument follows a similar pattern. Let 𝜆 ∈ [0, 1]
be such that 𝑥1 = 𝜆𝑥2+(1−𝜆)𝑥★. Then 𝑥1 = 𝜆𝑥2+(1−𝜆)𝑥★ ≥ 𝜆𝑥2+(1−𝜆)𝑥0 and
hence𝜆 ≤ (𝑥1−𝑥0)/(𝑥2−𝑥0) = 1

2 . By convexity, 𝑓 (𝑥1) ≤ 1
2 𝑓 (𝑥2) = 1

2 𝑓 (𝑥1)+ 1
2 𝜃

and hence 𝑓 (𝑥1) ≤ 𝜃. As before, 𝑓 (𝑥2) = 𝑓 (𝑥1) + 𝜃 ≤ 2𝜃. And by assumption
𝑓 (𝑥0) ≤ 𝑓 (𝑥2) ≤ 2𝜃. Summing shows that 𝑓 (𝑥0)+ 𝑓 (𝑥1)+ 𝑓 (𝑥2) ≤ 2𝜃+𝜃+2𝜃 =
5𝜃.
Case 3: [𝑥★ ∈ [𝑥1, 𝑥2]]. Let 𝜆 ∈ [0, 1] be such that 𝑥1 = 𝜆𝑥0+(1−𝜆)𝑥★. Then
𝑥1 = 𝜆𝑥0 + (1−𝜆)𝑥★ ≤ 𝜆𝑥0 + (1−𝜆)𝑥2. Therefore 𝜆 ≤ (𝑥2 − 𝑥1)/(𝑥2 − 𝑥0) = 1

2 .
Hence 𝑓 (𝑥1) ≤ 1

2 𝑓 (𝑥0) ≤ 1
2 𝑓 (𝑥2) = 1

2 𝑓 (𝑥1) + 1
2 𝜃 and so 𝑓 (𝑥1) ≤ 𝜃. As before,

𝑓 (𝑥0) ≤ 𝑓 (𝑥2) = 𝑓 (𝑥1) + 𝜃 ≤ 2𝜃, which also shows 𝑓 (𝑥2) ≤ 2𝜃. Therefore
𝑓 (𝑥0) + 𝑓 (𝑥1) + 𝑓 (𝑥2) ≤ 5𝜃.

We are now in a position to establish the claims of the theorem, starting with
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part (1). By assumption 𝑓 (𝑥2) ≥ 𝑓 (𝑥1) and hence 𝑥★ cannot be in [𝑥2, 𝑦]. The
algorithm cannot do any wrong if 𝑥★ ∈ [𝑥0, 𝑥2]. Suppose that 𝑥★ ∈ [𝑥, 𝑥0]. By
convexity 𝑓 (𝑥0) ≤ 𝑓 (𝑥1) and hence on 𝐺,

𝑓𝑡 (𝑥0) − 𝑓𝑡 (𝑥1) < 𝑓 (𝑥0) − 𝑓 (𝑥1) + 𝑐𝑡 ≤ 𝑐𝑡 ,

which means the algorithm does not return [𝑥0, 𝑦]. For part (2), suppose that
𝑐𝑡 ≤ 1

2 𝜃. Then, on event 𝐺,

𝑓𝑡 (𝑥2) − 𝑓𝑡 (𝑥1) ≥ 𝑓 (𝑥2) − 𝑓 (𝑥1) − 𝑐𝑡 = 𝜃 − 𝑐𝑡 ≥ 𝑐𝑡 ,

which means the algorithm halts. Since 𝜃 ≥ 1
2Δ, it follows that on 𝐺 the

algorithm halts once 𝑡 is a multiple of three and

1
4
Δ ≥ 𝑐𝑡 =

√︄
24
𝑡

log
(

4𝑛
3𝛿

)
.

Solving shows the algorithm halts after at most

3 + 384
Δ2 log

(
4𝑛
3𝛿

)
.

queries to the loss function. □

Exercise 4.5 ⋆⋆? Find a slick proof to replace the ugly case-by-case
analysis in the proof of Proposition 4.3.

The main algorithm runs Algorithm 4.2 iteratively on a shrinking interval
and decreasing confidence parameter 𝛿 to ensure that with high probability the
returned interval contains a minimiser of 𝑓 .

1 args : 𝐾 = [𝑥, 𝑦] , 𝑛 , 𝛿 ∈ (0, 1)
2 l e t 𝐾1 = [𝑥, 𝑦] and 𝑘max = 1 + ⌈log(𝑛)/log(4/3)⌉ .
3 f o r 𝑘 = 1 to ∞ :
4 l e t 𝑡 be t h e c u r r e n t round
5 i f 𝑡 = 𝑛 + 1 : e x i t
6 𝐾𝑘+1 = bisect

(
𝐾𝑘 , 𝑛 − 𝑡 + 1, 𝛿

𝑘max

)
# Algorithm 4.2

Algorithm 4.3: Bisection method

The main theorem of this chapter is the following theorem bounding the
regret of Algorithm 4.3.
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Theorem 4.6 Under Assumption 4.1, with probability at least 1 − 𝛿, the regret
of Algorithm 4.3 is bounded by

Reg𝑛 = 𝑂

(
vol(𝐾) +

√︂
𝑛 log

(𝑛
𝛿

)
log(𝑛)

)
.

Proof Algorithm 4.3 runs until the time horizon is reached, repeatedly calling
Algorithm 4.2. Let 𝑛𝑘 be the number of queries made to the loss function in
episode 𝑘 of Algorithm 4.3 and before the time horizon 𝑛 has been reached.
Hence

∑∞
𝑘=1 𝑛𝑘 = 𝑛. Let 𝐾𝑘 = [𝑥𝑘 , 𝑦𝑘] and

Δ𝑘 =
1
3

[
𝑓

(
1
4
𝑥𝑘 +

3
4
𝑦𝑘

)
+ 𝑓

(
1
2
𝑥𝑘 +

1
2
𝑦𝑘

)
+ 𝑓

(
3
4
𝑥𝑘 +

1
4
𝑦𝑘

)]
− 𝑓 (𝑥★) .

Since 𝑓 is Lipschitz, provided that 𝑥★ ∈ 𝐾𝑘 it holds that

Δ𝑘 ≤ max
𝑥∈𝐾𝑘

( 𝑓 (𝑥) − 𝑓 (𝑥★)) ≤ vol(𝐾𝑘) =
(

3
4

) 𝑘−1
vol(𝐾) . (4.1)

A union bound and Proposition 4.3 show that with probability at least 1 − 𝛿
every call made to Algorithm 4.2 in iterations 𝑘 ≤ 𝑘max either ends with the
horizon being reached or returns a new interval containing the optimum after at
most 𝑛𝑘 queries with

𝑛𝑘 ≤ 3 + 384
Δ2
𝑘

log
(

4𝑛𝑘max
3𝛿

)
. (4.2)

Assume this good event occurs. We claim that

Reg𝑛 =
𝑛∑︁
𝑡=1

( 𝑓 (𝑋𝑡 ) − 𝑓 (𝑥★)) ≤ 2 vol(𝐾) +
∞∑︁
𝑘=1

1(𝑘 < 𝑘max)𝑛𝑘Δ𝑘 . (4.3)

There are two cases.

Case 1: [𝑛𝑘max > 0]. This means that all calls to bisect in episodes 𝑘 < 𝑘max
resulted in a smaller interval being returned. Hence, for 𝑘 < 𝑘max, 𝑛𝑘 is a
multiple of 3 and the regret is 𝑛𝑘Δ𝑘 . The regret in the remaining episodes is
bounded by 𝑛(3/4)𝑘max−1 ≤ vol(𝐾) by (4.1).
Case 2: [𝑛𝑘max = 0]. In this case the final episode ends before a smaller
interval could be returned. Since for this 𝑘 it may not hold that 𝑛𝑘 is a multiple
of 3, we naively bound the regret by 𝑛𝑘Δ𝑘 + 2 vol(𝐾).

Together the two cases establish (4.3). By (4.2), for 𝑘 < 𝑘max,

𝑛𝑘Δ𝑘 ≤ 6Δ𝑘 +

√︄
768𝑛𝑘 log

(
4𝑛𝑘max

3𝛿

)
.
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Hence, by (4.3),

Reg𝑛 ≤ 2 vol(𝐾) +
∞∑︁
𝑘=1

1(𝑘 < 𝑘max)
6Δ𝑘 +

√︄
768𝑛𝑘 log

(
4𝑛𝑘max

3𝛿

)
≤ 2 vol(𝐾) + 6

∞∑︁
𝑘=1

(
3
4

) 𝑘−1
vol(𝐾) +

√√
768𝑘max

∞∑︁
𝑘=1

𝑛𝑘 log
(

4𝑛𝑘max
3𝛿

)
≤ 26 vol(𝐾) +

√︄
768𝑘max𝑛 log

(
4𝑛𝑘max

3𝛿

)
= 𝑂

(
vol(𝐾) +

√︁
𝑛 log(𝑛/𝛿) log(𝑛)

)
,

where we used Cauchy-Schwarz along with the fact that
∑∞
𝑘=1 𝑛𝑘 = 𝑛 and the

formula for the geometric sum. □

4.3 Notes

4.i: Algorithm 4.2 is due to Agarwal et al. (2011). The basic principle behind
the bisection method is that the volume of 𝐾𝑘 is guaranteed to decrease rapidly
with the number of iterations. Generalising this method to higher dimensions
is rather non-trivial. Agarwal et al. (2011) and Lattimore and György (2021a)
both used algorithms based on the ellipsoid method and Carpentier (2024) uses
the center of gravity method. These methods are covered in Chapter 9.

4.ii: Algorithm 4.2 works with no assumptions on 𝑓 beyond convexity and
Lipschitzness and ensures 𝑂 (

√
𝑛 log(𝑛)) regret in the stochastic setting. The

algorithm is distinct from all others in this book because its regret depends only
very weakly on the range of the loss function. This is what one should expect
from algorithms in the stochastic setting where the magnitude of the noise rather
than the losses should determine the regret, as it does for finite-armed bandits.

4.iii: There are various ways to refine Algorithm 4.1 for the deterministic
case that better exploit convexity (Orseau and Hutter, 2023). These ideas have
not yet been exploited in the noisy (bandit) setting. Bisection-based methods
for the deterministic setting seem fast and require just 𝑂 (log(1/𝜀)) queries to
the zeroth-order oracle to find an 𝜀-optimal point. Remarkably, for suitably
well-behaved functions Newton’s method is exponentially faster with sample
complexity 𝑂 (log log(1/𝜀)).

4.iv: Algorithm 4.1 can be improved with a simple modification. The
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algorithm evaluates 𝑓 at two points in each iteration, but by reusing data from
previous iterations you can implement almost the same algorithm using only one
evaluation in each iteration. The algorithm is called the golden section search,
which is usually analysed for unimodal function minimisation (Kiefer, 1953).

4.v: Cheshire et al. (2020) construct a more sophisticated algorithm for which
the expected simple regret is

E[sReg𝑛] = 𝑂
(√︂

log log(𝑛)
𝑛

)
,

which they show is optimal by proving a lower bound. By applying (1.4) with
Algorithm 4.3 and 𝛿 = 1/𝑛 we obtain a sightly inferior bound of

E[sReg𝑛] = 𝑂
(

log(𝑛)
√
𝑛

)
.

Exactly what the logarithmic dependence should be for the expected regret
(cumulative rather than simple) seems to be unknown.

4.vi: There is an interesting generalisation of the bisection search to a
different model where the noise is a bit more adversarial (Bachoc et al., 2022a,b).
In the setting of this chapter these algorithms have about the same regret as
Algorithm 4.3 but are careful to reuse data as we hinted at in Note 4.iv above.

4.vii: The confidence intervals used by Algorithm 4.2 are generally quite
conservative. In practical implementation you may prefer to use standard
statistical tests. This will generally improve performance (quite dramatically).
The price is that in extreme cases your confidence intervals will be invalid and
the algorithm could suffer linear regret.



5
Online gradient descent

Throughout this chapter we assume the constraint set contains a euclidean ball
of unit radius and that the losses are bounded, Lipschitz and there is no noise:

Assumption 5.1 The following hold:

(1) B𝑑1 ⊂ 𝐾; and
(2) the loss functions ( 𝑓𝑡 )𝑛𝑡=1 are in ℱb,l; and
(3) there is no noise: 𝜀𝑡 = 0 for all 𝑡.

Figure 5.1: The long steady
slog to the top. Hope the view
is nice.

In contrast to the previous chapter, the set-
ting is now adversarial. The most well-known
optimisation algorithm is gradient descent. By
default this algorithm needs access to the gradi-
ent of the loss. In this chapter we introduce an
idea that is ubiquitous in zeroth-order optimisa-
tion, which is to use a gradient-based algorithm
but replace the true gradients with estimated
gradients of a smoothed loss. We start by ex-
plaining the standard analysis of online gradient
descent and then introduce spherical smoothing.
These ideas are then combined to yield a simple
algorithm and analysis.

5.1 Gradient descent

Gradient descent incrementally computes a sequence of iterates (𝑥𝑡 )𝑛𝑡=1 with 𝑥𝑡+1
computed by taking a gradient step from 𝑥𝑡 . Let Π𝐾 (𝑥) = arg min𝑦∈𝐾 ∥𝑥 − 𝑦∥
be the euclidean projection onto 𝐾 . An abstract version of gradient descent for
bandit convex optimisation is given below.

50



5.1 Gradient descent 51

1 args : l e a r n i n g r a t e 𝜂 > 0
2 i n i t i a l i s e 𝑥1 ∈ 𝐾
3 f o r 𝑡 = 1 to 𝑛

4 sample 𝑋𝑡 from some d i s t r i b u t i o n based on 𝑥𝑡

5 o b s e r v e 𝑌𝑡 = 𝑓𝑡 (𝑋𝑡 )
6 compute g r a d i e n t e s t i m a t e 𝑔𝑡 u s i n g 𝑥𝑡 , 𝑋𝑡 and 𝑌𝑡

7 u p d a t e 𝑥𝑡+1 = Π𝐾 (𝑥𝑡 − 𝜂𝑔𝑡 )

Algorithm 5.1: Abstract gradient descent

Importantly, the algorithm does not evaluate the loss function at 𝑥𝑡 but rather
at some random point 𝑋𝑡 and the distribution of this point has not been specified
yet. We have rather informally written that the (conditional) law of 𝑋𝑡 should be
based on 𝑥𝑡 , by which we mean that

P(𝑋𝑡 ∈ 𝐴|ℱ𝑡−1) = 𝜈(𝐴|𝑥𝑡 )

for some probability kernel 𝜈 : ℬ(𝐾) × 𝐾 → [0, 1]. The kernel 𝜈 determines
how the algorithm explores. The gradient estimate 𝑔𝑡 is usually not an estimate
of 𝑓 ′𝑡 (𝑥), which may not even exist. Instead it is an estimate of the gradient of
some surrogate loss function 𝑠𝑡 that is close to 𝑓𝑡 . We return to the problem of
defining the exploration kernel, surrogate and gradient estimates momentarily.
Before that we give some details about gradient descent. The analysis of gradient
descent at our disposal from the online learning literature yields a bound on
the regret relative to the linear losses defined by the gradient estimates 𝑔𝑡 .
Specifically, we have the following theorem:

Theorem 5.2 Let (𝑥𝑡 )𝑛𝑡=1 be the iterates produced by Algorithm 5.1. Then, for
any 𝑥 ∈ 𝐾 ,

R̂eg𝑛 (𝑥) ≜
𝑛∑︁
𝑡=1

⟨𝑔𝑡 , 𝑥𝑡 − 𝑥⟩ ≤
diam(𝐾)2

2𝜂
+ 𝜂

2

𝑛∑︁
𝑡=1

∥𝑔𝑡 ∥2 .

Remark 5.3 In most applications of Theorem 5.2, 𝑔𝑡 = 𝑓 ′𝑡 (𝑥𝑡 ). By convexity
one has 𝑓𝑡 (𝑥𝑡 ) − 𝑓𝑡 (𝑥) ≤ ⟨𝑔𝑡 , 𝑥𝑡 − 𝑥⟩ and Theorem 5.2 provides an upper bound
on the regret of gradient descent with respect to the losses ( 𝑓𝑡 ). As mentioned
above, in the bandit setting the gradient 𝑓 ′𝑡 (𝑥𝑡 ) is not available and we will let
𝑔𝑡 be an estimate of the gradient of a suitable surrogate.

Proof Let 𝑥 ∈ 𝐾 . The idea is quite simple. Suppose the instantaneous regret
𝑟𝑡 = ⟨𝑔𝑡 , 𝑥𝑡 − 𝑥⟩ is large. Then, provided that 𝜂 ∥𝑔𝑡 ∥ is not too large, the algorithm
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takes a step such that ∥𝑥𝑡+1 − 𝑥∥ ≤ ∥𝑥𝑡 − 𝑥∥. And indeed, the decrease can be
written as a function of 𝑟𝑡 . Since the distance to 𝑥 is always non-negative, the
cumulative change in distance to 𝑥 cannot be large. This suggests a potential
argument, which mathematically uses the squared norms as follows:

1
2
∥𝑥𝑡+1 − 𝑥∥2 =

1
2
∥Π𝐾 (𝑥𝑡 − 𝜂𝑔𝑡 ) − 𝑥∥2

≤ 1
2
∥𝑥𝑡 − 𝑥 − 𝜂𝑔𝑡 ∥2

=
1
2
∥𝑥𝑡 − 𝑥∥2 + 𝜂2

2
∥𝑔𝑡 ∥2 − 𝜂 ⟨𝑔𝑡 , 𝑥𝑡 − 𝑥⟩ ,

where in the inequality we used the fact that ∥𝑧 − Π𝐾 (𝑦)∥ ≤ ∥𝑧 − 𝑦∥ for all
𝑧 ∈ 𝐾 and 𝑦 ∈ R𝑑 . Rearranging shows that

R̂eg𝑛 (𝑥) =
𝑛∑︁
𝑡=1

⟨𝑔𝑡 , 𝑥𝑡 − 𝑥⟩

≤
𝑛∑︁
𝑡=1

[
𝜂

2
∥𝑔𝑡 ∥2 + 1

2𝜂
∥𝑥𝑡 − 𝑥∥2 − 1

2𝜂
∥𝑥𝑡+1 − 𝑥∥2

]
≤ 1

2𝜂
∥𝑥1 − 𝑥∥2 + 𝜂

2

𝑛∑︁
𝑡=1

∥𝑔𝑡 ∥2

≤ diam(𝐾)2

2𝜂
+ 𝜂

2

𝑛∑︁
𝑡=1

∥𝑔𝑡 ∥2 . □

What conditions are needed on the gradients (𝑔𝑡 )𝑛𝑡=1 if we want to bound the
actual regret in terms of R̂eg𝑛? Let 𝑥★ = arg min𝑥∈𝐾

∑𝑛
𝑡=1 𝑓𝑡 (𝑥). We have

E[Reg𝑛] = E

[
𝑛∑︁
𝑡=1

( 𝑓𝑡 (𝑋𝑡 ) − 𝑓𝑡 (𝑥★))
]

= E

[
𝑛∑︁
𝑡=1

(E𝑡−1 [ 𝑓𝑡 (𝑋𝑡 )] − 𝑓𝑡 (𝑥★))
]

(†)
≲ E

[
𝑛∑︁
𝑡=1

⟨E𝑡−1 [𝑔𝑡 ], 𝑥𝑡 − 𝑥★⟩
]

= E

[
𝑛∑︁
𝑡=1

⟨𝑔𝑡 , 𝑥𝑡 − 𝑥★⟩
]
= E

[
R̂eg𝑛 (𝑥★)

]
The question is how can we ensure that (†) holds? Remember that P𝑡−1 (𝑋𝑡 =
·) = 𝜈(·|𝑥𝑡 ) and we get to choose the kernel 𝜈 and the gradient estimator 𝑔𝑡 .
Since 𝑥★ is not known, the most natural objective is to try and select the kernel
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and gradient estimate in such a way that for all 𝑥 ∈ 𝐾 ,

E𝑡−1 [ 𝑓𝑡 (𝑋𝑡 )] − 𝑓𝑡 (𝑥) ≲ ⟨E𝑡−1 [𝑔𝑡 ], 𝑥𝑡 − 𝑥⟩ .

Furthermore, to bound E[R̂eg𝑛] we need to bound E𝑡−1 [∥𝑔𝑡 ∥2]. Summarising,
a kernel 𝜈 and gradient estimate 𝑔𝑡 will yield a good regret bound if:

(1) E𝑡−1 [ 𝑓𝑡 (𝑋𝑡 )] − 𝑓𝑡 (𝑥) ≲ ⟨E𝑡−1 [𝑔𝑡 ], 𝑥𝑡 − 𝑥⟩ for all 𝑥 ∈ 𝐾; and
(2) E𝑡−1 [∥𝑔𝑡 ∥2] is small.

Remark 5.4 If the learner has access to the gradient 𝑔𝑡 = 𝑓 ′𝑡 (𝑥𝑡 ), then
𝑓𝑡 (𝑥𝑡 ) − 𝑓𝑡 (𝑥) ≤ ⟨𝑔𝑡 , 𝑥𝑡 − 𝑥⟩ for all 𝑥 ∈ 𝐾 by convexity and ∥𝑔𝑡 ∥2 ≤ 1 since
𝑓𝑡 ∈ ℱb,l is Lipschitz. That is (1) and (2) hold with 𝑔𝑡 = 𝑓 ′𝑡 (𝑥𝑡 ) and 𝑋𝑡 = 𝑥𝑡 .

5.2 Spherical smoothing

Let 𝑥 ∈ 𝐾 and 𝑓 ∈ ℱb,l. Our algorithm will play some action 𝑋 that is a
random variable and observe 𝑌 = 𝑓 (𝑋). We want a gradient estimator 𝑔 that is
a function of 𝑋 and 𝑌 such that

(1) E[ 𝑓 (𝑋)] − 𝑓 (𝑦) ≲ ⟨E[𝑔], 𝑥 − 𝑦⟩ for all 𝑦 ∈ 𝐾; and
(2) E[∥𝑔∥2] is small.

A simple and beautiful estimator is based on Stokes’ theorem. Let 𝑟 ∈ (0, 1) be
a precision parameter and define 𝑠 as the convolution between 𝑓 and a uniform
distribution on B𝑑𝑟 . That is,

𝑠(𝑥) = 1
vol(B𝑑𝑟 )

∫
B𝑑𝑟
𝑓 (𝑥 + 𝑢) d𝑢 .

Some examples are plotted in Figure 5.2. The function 𝑠 is convex because it is
the convolution of a convex function and a probability density. We have to be
careful about the domain of 𝑠. Because 𝑓 is only defined on 𝐾 , the surrogate 𝑠
is only defined on

dom(𝑠) = {𝑥 ∈ 𝐾 : 𝑥 + B𝑑𝑟 ⊂ 𝐾} .

By Stoke’s theorem, the gradient of 𝑠 at 𝑥 ∈ dom(𝑠) is

𝑠′ (𝑥) = 1
vol(B𝑑𝑟 )

∫
B𝑑𝑟
𝑓 ′ (𝑥 + 𝑢) d𝑢 =

𝑑

𝑟

1
vol(S𝑑−1

𝑟 )

∫
S𝑑−1
𝑟

𝑓 (𝑥 + 𝑢) 𝑢
𝑟

d𝑢 , (5.1)

where we also used the fact from Proposition A.1(2) that vol(S𝑑−1
𝑟 )/vol(B𝑑𝑟 ) =

𝑑
𝑟

. Actually in the above display we took some liberties. What if 𝑓 is not
differentiable?
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Exercise 5.5 ⋆ Prove that the left-hand and right-hand sides of (5.1) holds
even when 𝑓 is not differentiable.

The right-hand side of (5.1) suggests a way of estimating 𝑠′ (𝑥). Let 𝑈 be
uniformly distributed on S𝑑−1

𝑟 and 𝑋 = 𝑥 +𝑈 and define the surrogate gradient
estimate by

𝑔 =
𝑑𝑌𝑈

𝑟2 ,

which has expectation E[𝑔] = 𝑠′ (𝑥). How well does this estimator satisfy our
criteria? Suppose that 𝑉 has law U (B𝑑𝑟 ). Then, since 𝑓 is Lipschitz,

𝑠(𝑦) = E[ 𝑓 (𝑦 +𝑉)] ≤ E[ 𝑓 (𝑦)] + 𝑟 for all 𝑦 ∈ dom(𝑠) .

On the other hand, since 𝑟𝑉/∥𝑉 ∥ has law U (S𝑑−1
𝑟 ),

𝑠(𝑥) = E[ 𝑓 (𝑥 +𝑉)] ≥ E
[
𝑓

(
𝑥 + 𝑟𝑉

∥𝑉 ∥

)]
−





𝑉 − 𝑟𝑉

∥𝑉 ∥





 = E[ 𝑓 (𝑋)] − 𝑟

𝑑 + 1
,

where we used the fact in Proposition A.4 that E[∥𝑉 ∥] = 𝑟𝑑
𝑑+1 . Therefore, since

𝑠 is convex,

⟨E[𝑔], 𝑥 − 𝑦⟩ = ⟨𝑠′ (𝑥), 𝑥 − 𝑦⟩ ≥ 𝑠(𝑥) − 𝑠(𝑦) ≥ E[ 𝑓 (𝑋)] − 𝑓 (𝑦) − 𝑟
(
𝑑 + 2
𝑑 + 1

)
.

(5.2)

This seems fairly promising. When 𝑟 is small, then (1) above is indeed satisfied.
Moving now to (2),

E[∥𝑔∥2] = 𝑑2

𝑟2 E[𝑌
2] = 𝑑2

𝑟2 E[ 𝑓 (𝑋)
2] ≤ 𝑑2

𝑟2 , (5.3)

where we used the fact that ∥𝑈∥ = 𝑟 and the assumption that 𝑓 ∈ ℱb is bounded
on 𝐾 . The situation is at a standoff. To satisfy (1) we need 𝑟 to be fairly small,
but then E[∥𝑔∥2] will be quite large. Nevertheless, enough has been done to
make progress.

5.3 Algorithm and regret analysis

The surrogate and its gradient estimator can be cleanly inserted into online
gradient descent to obtain the following simple algorithm for bandit convex
optimisation.
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Figure 5.2: The smoothed surrogates for different functions and precisions.
Because of convexity the surrogate function is always an upper bound on the
original function. Notice how much better the approximation is for − log(𝑥),
which on the interval considered is much smoother than |𝑥 |.

1 args : l e a r n i n g r a t e 𝜂 > 0 and p r e c i s i o n 𝑟 ∈ (0, 1)
2 i n i t i a l i s e 𝑥1 ∈ 𝐾𝑟 = (1 − 𝑟)𝐾
3 f o r 𝑡 = 1 to 𝑛

4 sample 𝑈𝑡 u n i f o r m l y from S𝑑−1
𝑟 and p l a y 𝑋𝑡 = 𝑥𝑡 +𝑈𝑡

5 o b s e r v e 𝑌𝑡 = 𝑓𝑡 (𝑋𝑡 )
6 compute g r a d i e n t e s t i m a t e 𝑔𝑡 =

𝑑𝑌𝑡𝑈𝑡
𝑟2

7 u p d a t e 𝑥𝑡+1 = Π𝐾𝑟 (𝑥𝑡 − 𝜂𝑔𝑡 ) .

Algorithm 5.2: Bandit gradient descent

Theorem 5.6 Suppose that

𝜂 =

√︂
2
5

diam(𝐾) 3
2 𝑑−

1
2 𝑛−

3
4 and 𝑟 = min

(
1,

√︂
2
5

diam(𝐾) 1
2 𝑑

1
2 𝑛−

1
4

)
.

Under Assumption 5.1 the expected regret of Algorithm 5.2 is bounded by

E[Reg𝑛] ≤
√

10 diam(𝐾) 1
2 𝑑

1
2 𝑛

3
4 .

Proof Suppose that 𝑟 = 1. Then
√︁

2/5 diam(𝐾) 1
2 𝑑

1
2 𝑛−

1
4 ≥ 1, which along

with the assumption that the losses are bounded in [0, 1] implies that

E[Reg𝑛] ≤ 𝑛 ≤
√︁

2/5 diam(𝐾) 1
2 𝑑

1
2 𝑛

3
4
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and the claim is proven. For the remainder we assume that 𝑟 < 1. The surrogate
in round 𝑡 is

𝑠𝑡 (𝑥) =
1

vol(B𝑑𝑟 )

∫
B𝑑𝑟
𝑓𝑡 (𝑥 + 𝑢) d𝑢 .

Note, by Lemma 3.4 and the assumption that B𝑑1 ⊂ 𝐾, it follows that 𝐾𝑟 ⊂
dom(𝑠𝑡 ) for all 1 ≤ 𝑡 ≤ 𝑛. By Proposition 3.13,

min
𝑥∈𝐾𝑟

𝑛∑︁
𝑡=1

𝑓𝑡 (𝑥) ≤ 𝑟𝑛 + min
𝑥∈𝐾

𝑛∑︁
𝑡=1

𝑓𝑡 (𝑥) .

Therefore, letting 𝑥★ = arg min𝑥∈𝐾𝑟
∑𝑛
𝑡=1 𝑓𝑡 (𝑥),

E[Reg𝑛] = max
𝑥∈𝐾

E

[
𝑛∑︁
𝑡=1

( 𝑓𝑡 (𝑋𝑡 ) − 𝑓𝑡 (𝑥))
]

≤ 𝑟𝑛 + E

[
𝑛∑︁
𝑡=1

( 𝑓𝑡 (𝑋𝑡 ) − 𝑓𝑡 (𝑥★))
]

≤ 𝑟𝑛
(

2𝑑 + 3
𝑑 + 1

)
+ E

[
𝑛∑︁
𝑡=1

⟨𝑔𝑡 , 𝑥𝑡 − 𝑥★⟩
]
. By (5.2)

By Theorem 5.6 and (5.3),

E

[
𝑛∑︁
𝑡=1

⟨𝑔𝑡 , 𝑥𝑡 − 𝑥★⟩
]
≤ diam(𝐾)2

2𝜂
+ 𝜂

2
E

[
𝑛∑︁
𝑡=1

∥𝑔𝑡 ∥2

]
≤ diam(𝐾)2

2𝜂
+ 𝜂𝑛𝑑2

2𝑟2 .

Combining shows that

E[Reg𝑛] ≤
diam(𝐾)2

2𝜂
+ 𝜂𝑛𝑑2

2𝑟2 + 𝑟𝑛
(

2𝑑 + 3
𝑑 + 1

)
.

The claim follows by bounding 2𝑑+3
𝑑+1 ≤ 5

2 and substituting the constants. □

5.4 Notes

5.i: Theorem 5.2 is due to Zinkevich (2003). Algorithm 5.2 essentially
appears in the independent works by Flaxman et al. (2005) and Kleinberg (2005).
The algorithm continues to work without Lipschitzness but the regret increases
to 𝑂 (𝑑𝑛5/6) as explained by Flaxman et al. (2005).

5.ii: By Proposition 1.7, the regret bound in Theorem 5.6 implies a bound on
the sample complexity of 𝑂̃ (diam(𝐾)2𝑑2/𝜀4). As far as we know, the spherical
smoothing estimator was introduced by Nemirovsky and Yudin (1983) who used
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it to prove essentially the same sample complexity as above modulo some minor
technical assumptions about the boundary. Nemirovsky and Yudin (1983) also
noticed that smoothness increases the performance of the spherical estimator,
which we explain in Chapter 6.

5.iii: We did not say much about computation. The only complicated
part is computing the projections, the hardness of which depends on how 𝐾 is
represented. Note the algorithm does not project onto𝐾 but rather𝐾𝑟 = (1−𝑟)𝐾 .

5.iv: Garber and Kretzu (2022) show there are alternative ways to keep the
iterates inside the constraint set. They assume that B𝑑

𝛿
⊂ 𝐾 for some 𝛿 > 0

and design gradient-descent-based algorithms for which the regret more-or-less
matches Theorem 5.6 and that need either 𝑂 (𝑛) queries to a linear optimisation
oracle or 𝑂 (𝑛) queries to a separation oracle.

5.v: Another way to avoid projections is to run gradient descent on the
extension defined in Proposition 3.20. This is the approach we will take in
Chapter 10. Yet another is to use self-concordant barriers as explained in
Chapter 6, though this also comes at a computational cost.



6
Self-concordant regularisation

The algorithm based on gradient descent in the previous chapter is simple and
computationally efficient, at least provided the projection can be computed.
There are two limitations, however.

◦ We needed to assume the losses were Lipschitz and the regret depended
polynomially on the diameter of the constraint set.

◦ Exploiting smoothness and/or strong convexity is not straightforward due to
boundary effects, as we explain in the notes.

Both limitations will be removed using ‘follow-the-regularised-leader’ and
the beautiful machinery of self-concordant barriers. With the exception of
Section 6.6, it is assumed throughout this chapter that there is no noise and the
losses are bound:

Assumption 6.1 The following hold:

(1) There is no noise: 𝜀𝑡 = 0 for all 𝑡.
(2) The losses are bounded: 𝑓𝑡 ∈ ℱb for all 𝑡.

Four new regret bounds are given in this chapter, all improving on what was
shown in Chapter 5 in various ways. The first removes the requirement that the
loss is Lipschitz and eliminates entirely the dependence on the diameter of the
constraint set. The second shows how smoothness of the losses improves the
quality of the surrogate loss and leads to a dependence on the horizon of 𝑂̃ (𝑛2/3).
The highlight is showing that 𝑂̃ (

√
𝑛) regret is attained by a simple algorithm

when the losses are assumed to be smooth and strongly convex. Without this
assumption it is still possible to obtain 𝑂̃ (

√
𝑛) regret but with a more complicated

algorithm and a much more sophisticated analysis (Chapters 10 and 11). Lastly,
a little time is devoted to investigating the stochastic setting where additionally

58
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the variance of the noise is assumed to be smaller than the range of the losses
(Section 6.6).

6.1 Self-concordant barriers

Self-concordance was introduced by Nesterov (1988) as part of the machinery
of interior point methods for linear programming. A three times differentiable
convex function 𝑅 : int(𝐾) → R is a self-concordant barrier on 𝐾 if

◦ |𝐷3𝑅(𝑥) [ℎ, ℎ, ℎ] | ≤ 2(𝐷2𝑅(𝑥) [ℎ, ℎ])3/2 for all 𝑥 ∈ int(𝐾) and ℎ ∈ R𝑑 .
◦ 𝑅 is a barrier: 𝑅(𝑥𝑡 ) → ∞ whenever 𝑥𝑡 → 𝜕𝐾 .

It is called a 𝜗-self-concordant barrier if additionally:

◦ 𝐷𝑅(𝑥) [ℎ] ≤
√︁
𝜗𝐷2𝑅(𝑥) [ℎ, ℎ] for all 𝑥 ∈ int(𝐾) and ℎ ∈ R𝑑 where 𝜗 is a

(hopefully small) positive real value.

The local norm at 𝑥 ∈ int(𝐾) associated with 𝑅 is ∥ℎ∥𝑥 ≜ ∥ℎ∥𝑅′′ (𝑥 ) and its
dual is ∥ℎ∥𝑥★ = ∥ℎ∥𝑅′′ (𝑥 )−1 . The Dikin ellipsoid of radius 𝑟 at 𝑥 is

𝐸 𝑥𝑟 = {𝑦 : ∥𝑦 − 𝑥∥𝑥 ≤ 𝑟} .

We collect the following facts about 𝜗-self-concordant barriers:

Lemma 6.2 Suppose that 𝑅 is a self-concordant barrier on 𝐾 , then

(1) The Dikin ellipsoid is contained in 𝐾: 𝐸 𝑥1 ⊂ 𝐾 for all 𝑥 ∈ int(𝐾).
(2) For all 𝑥, 𝑦 ∈ int(𝐾),

𝑅(𝑦) ≥ 𝑅(𝑥) + ⟨𝑅′ (𝑥), 𝑦 − 𝑥⟩ + 𝜌(− ∥𝑥 − 𝑦∥𝑥)

with 𝜌(𝑠) = − log(1 − 𝑠) − 𝑠.
(3) tr(𝑅′′ (𝑥)−1) ≤ 𝑑 diam(𝐾 )2

4 for all 𝑥 ∈ int(𝐾).

Suppose additionally that 𝑅 is a 𝜗-self-concordant barrier and is minimised at
0 ∈ 𝐾 , then with 𝜋 the Minkowski functional of 𝐾 ,

(4) 𝑅(𝑥) ≤ 𝑅(0) − 𝜗 log (1 − 𝜋(𝑥)) for all 𝑥 ∈ int(𝐾).

For some intuition, part (1) is illustrated in Figure 6.1 and (3) is a conse-
quence of this (see proof below). Part (2) is a kind of local strong convexity with
respect to the norm ∥·∥𝑥 . Alternatively, you can view it as an explicit bound on
the Taylor series expansion of 𝑅 at 𝑥 by noting that 𝜌(𝑠) ∼ 𝑠2/2 for |𝑠 | = 𝑜(1).
Because 𝑅 is a barrier it explodes near the boundary of 𝐾. Part (4) says that
this explosion is quite slow, remembering from Section 3.1 that 𝜋(𝑥) < 1
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is equivalent to 𝑥 ∈ int(𝐾). Note that in (4) we are using Assumption 6.3.
Otherwise the Minkowski functional would need to be defined relative to the
minimiser of 𝑅.

Proof ( ) Part (1) appears above Equation (2.2) in the notes by Nemirovski
(1996). Part (2) is Equation (2.4) in the same notes. Part (3) follows from
Part (1). To see why, let 𝜉 ∈ S𝑑−1

1 and notice that 𝑥 ± 𝑅′′ (𝑥)−1/2𝜉 ∈ 𝐸 𝑥1 ⊂ 𝐾.
Therefore

∥𝜉∥𝑅′′ (𝑥 )−1 =
1
2




(𝑥 + 𝑅′′ (𝑥)−1/2𝜉
)
−

(
𝑥 − 𝑅′′ (𝑥)−1/2𝜉

)


 ≤ diam(𝐾)
2

.

The result follows because

tr(𝑅′′ (𝑥)−1) =
𝑑∑︁
𝑘=1

∥𝑒𝑘 ∥2
𝑅′′ (𝑥 )−1 ≤

𝑑 diam(𝐾)2

4

with (𝑒𝑘)𝑑𝑘=1 the standard basis vectors. Part (4) appears as Equation (3.7) in
the notes by Nemirovski (1996). □

We will always assume that the coordinate system has been chosen so that
0 ∈ 𝐾 and 𝑅 is minimised at 0:

Assumption 6.3 𝑅 is a 𝜗-self-concordant barrier on 𝐾 and the coordinates
are chosen so that arg min𝑥∈int(𝐾 ) 𝑅(𝑥) = 0.

Figure 6.1: Dikin ellpsoids for a polytope and the ball using the barriers in
Note 6.iv.

Lemma 6.4 Suppose that Φ : int(𝐾) → R is a self-concordant barrier on 𝐾
and 𝑥 = arg min𝑧∈int(𝐾 ) Φ(𝑧) and 𝑦 ∈ int(𝐾) is such that ∥Φ′ (𝑦)∥𝑦★ ≤ 1

2 . Then
Φ(𝑦) −Φ(𝑥) ≤ ∥Φ′ (𝑦)∥2

𝑦★.

Note that Φ ≠ 𝑅 and we do not assume that Φ is minimised at 0.



6.2 Follow-the-regularised-leader 61

Proof ( ) Let 𝑦 ∈ int(𝐾) be such that ∥Φ′ (𝑦)∥𝑦★ ≤ 1
2 and abbreviate

𝑔 = Φ′ (𝑦). Then,

Φ(𝑥) ≥ Φ(𝑦) + ⟨𝑔, 𝑥 − 𝑦⟩ + 𝜌(− ∥𝑥 − 𝑦∥𝑦) Lemma 6.2(2)

≥ Φ(𝑦) − ∥𝑔∥𝑦★ ∥𝑥 − 𝑦∥𝑦 + 𝜌(− ∥𝑥 − 𝑦∥𝑦) . Cauchy-Schwarz

Therefore,

Φ(𝑦) ≤ Φ(𝑥) + ∥𝑔∥𝑦★ ∥𝑥 − 𝑦∥𝑦 − 𝜌(− ∥𝑥 − 𝑦∥𝑦)
≤ Φ(𝑥) + max

𝑟≥0

[
𝑟 ∥𝑔∥𝑦★ − 𝜌(−𝑟)

]
= Φ(𝑥) − log

[
1 − ∥𝑔∥𝑦★

]
− ∥𝑔∥𝑦★

≤ Φ(𝑥) + ∥𝑔∥2
𝑦★ .

where the equality follows by substituting the definition of 𝜌(𝑠) = − log(1−𝑠)−𝑠
and using basic calculus and the assumption that ∥𝑔∥𝑦★ ≤ 1/2. The final
inequality follows from the elementary and naive inequality: − log(1− 𝑡) − 𝑡 ≤ 𝑡2
for 𝑡 ≤ 1

2 . □

6.2 Follow-the-regularised-leader

Follow-the-regularised-leader can be viewed as a generalisation of gradient
descent, which for bandits has the following abstract form. Like gradient descent,
follow-the-regularised-leader maintains a sequence of iterates (𝑥𝑡 )𝑛𝑡=1 in 𝐾 with
𝑥1 = arg min𝑥∈int(𝐾 ) 𝑅(𝑥).

1 args : 𝜂 > 0
2 f o r 𝑡 = 1 to 𝑛

3 compute 𝑥𝑡 = arg min𝑥∈int(𝐾 )
[
𝑅(𝑥) + ∑𝑡−1

𝑢=1 𝜂 ⟨𝑔𝑢, 𝑥⟩
]

4 sample 𝑋𝑡 based on 𝑥𝑡 and o b s e r v e 𝑌𝑡

5 compute g r a d i e n t e s t i m a t e 𝑔𝑡 u s i n g 𝑥𝑡 , 𝑋𝑡 and 𝑌𝑡

Algorithm 6.1: Follow-the-regularised-leader

As for gradient descent, to make this an algorithm we need to decide on the
conditional law of 𝑋𝑡 and what to use for the gradient 𝑔𝑡 . To get a handle on
what is needed, we explain what is guaranteed on the regret relative to the linear
losses defined by 𝑔𝑡 .
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Theorem 6.5 Let 𝑥 ∈ int(𝐾) and suppose that 𝜂 ∥𝑔𝑡 ∥𝑥𝑡★ ≤ 1/2 for all 𝑡. Then
for Algorithm 6.1,

R̂eg𝑛 (𝑥) ≜
𝑛∑︁
𝑡=1

⟨𝑔𝑡 , 𝑥𝑡 − 𝑥⟩ ≤
𝜗

𝜂
log

(
1

1 − 𝜋(𝑥)

)
+ 𝜂

𝑛∑︁
𝑡=1

∥𝑔𝑡 ∥2
𝑥𝑡★

.

The proof of Theorem 6.5 is omitted because it follows from a more general
result that we prove later (Theorem 6.15).

6.3 Optimistic ellipsoidal smoothing

Let us momentarily drop the 𝑡 indices and let 𝑥 ∈ int(𝐾) and 𝑓 ∈ ℱb. We will
introduce a new kind of smoothing. Let Σ be positive definite and 𝐸 = {𝑧 ∈
R𝑑 : ∥𝑥 − 𝑧∥Σ−1 ≤ 1}, which is an ellipsoid centered at 𝑥. We will assume that
𝐸 ⊂ 𝐾 and let

𝑠(𝑦) = 1
vol(𝐸)

∫
𝐸

(
2 𝑓

(
1
2 𝑧 +

1
2 𝑦

)
− 𝑓 (𝑧)

)
d𝑧 . (6.1)

Remark 6.6 Caution! The ellipsoid 𝐸 in the definition of 𝑠(𝑦) is centered at 𝑥.

The surrogate loss 𝑠 behaves quite differently to the spherical smoothing used
in Chapter 5. Perhaps the most notable property is that 𝑠 is optimistic in the
sense that 𝑠(𝑦) ≤ 𝑓 (𝑦) for all 𝑦 ∈ 𝐾 as we prove below. The second is that
the surrogate is not a good uniform approximation of the real loss, even when
Σ = 𝑟1 and the precision 𝑟 is very small. We want 𝑔 to be an estimate of 𝑠′ (𝑥),
which is

𝑠′ (𝑥) = 1
vol(𝐸)

∫
𝐸

𝑓 ′ ( 1
2 𝑧 +

1
2𝑥) d𝑧

=
1

vol(B𝑑1 )

∫
B𝑑1

𝑓 ′ (𝑥 + 1
2Σ

1/2𝑧) d𝑧 Change of variables

=
2Σ−1/2

vol(B𝑑1 )

∫
S𝑑−1

1

𝑓 (𝑥 + 1
2Σ

1/2𝜉)𝜉 d𝜉 Stokes’ theorem

=
2𝑑Σ−1/2

vol(S𝑑−1
1 )

∫
S𝑑−1

1

𝑓 (𝑥 + 1
2Σ

1/2𝜉)𝜉 d𝜉 . Proposition A.1(2)

Please note we have cheated a little here by assuming that 𝑓 is differentiable
and applying Stokes’ theorem. Fortunately the equality still holds even without
differentiability, which is a good exercise.

Exercise 6.7 ⋆ Prove the equality in the above display without assuming 𝑓

is differentiable.
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Let 𝜉 be uniformly distributed on S𝑑−1
1 and 𝑋 = 𝑥+ 1

2Σ
1/2𝜉. Then, by previous

display,

𝑠′ (𝑥) = 4𝑑Σ−1E[ 𝑓 (𝑋) (𝑋 − 𝑥)] .

Therefore an unbiased estimator of 𝑠′ (𝑥) is

𝑔 = 4𝑑Σ−1𝑌 (𝑋 − 𝑥) .

The above considerations yield the following lemma:

Lemma 6.8 E[𝑔] = 𝑠′ (𝑥).

The next lemma explores the properties of 𝑠.

Lemma 6.9 Suppose that 𝑠 is defined by (6.1) and 𝐸 = {𝑦 : ∥𝑥 − 𝑦∥Σ−1 ≤
1} ⊂ 𝐾 . The following hold:

(1) 𝑠 is convex; and
(2) 𝑠(𝑦) ≤ 𝑓 (𝑦) for all 𝑦 ∈ 𝐾 .
(3) If 𝑟 ∈ (0, 1) and Σ = 𝑟2𝑅′′ (𝑥)−1, then E [ 𝑓 (𝑋) − 𝑠(𝑥)] ≤ 𝑟/2

1−𝑟 .
(4) If 𝑓 is 𝛽-smooth, then E [ 𝑓 (𝑋) − 𝑠(𝑥)] ≤ 3𝛽 tr(Σ)

4𝑑 .
(5) If 𝑓 is 𝛼-strongly convex, then 𝑠 is 𝛼

2 -strongly convex.

Proof Part (1) follows immediately from convexity of 𝑓 , noting that the
second (negated) term in the definition of 𝑠 is constant as a function of 𝑦.
Part (2) follows from convexity of 𝑓 as well:

𝑠(𝑦) = 1
vol(𝐸)

∫
𝐸

(
2 𝑓

(
1
2 𝑧 +

1
2 𝑦

)
− 𝑓 (𝑧)

)
d𝑧 ≤ 1

vol(𝐸)

∫
𝐸

𝑓 (𝑦) d𝑧 = 𝑓 (𝑦) .

For part (3), let R ∋ 𝑢 ↦→ ℎ𝜉 (𝑢) = 𝑓 (𝑥 + 𝑢Σ1/2𝜉). You now have to solve the
following exercise, which follows directly from the definitions.

Exercise 6.10 ⋆ Let 𝜈 be sampled uniformly from B𝑑1 and independent of
𝜉, which is uniformly sampled from S𝑑−1

1 . Show that

E[ 𝑓 (𝑋)] = E[ℎ𝜉 (1/2)] and 𝑠(𝑥) = E[2ℎ𝜉 (∥𝜈∥ /2) − ℎ𝜉 (∥𝜈∥)] .

By definition Σ = 𝑟2𝑅′′ (𝑥)−1 so that for 𝑢 ∈ [−1/𝑟, 1/𝑟], 𝑥 + 𝑢Σ1/2𝜉 ∈
𝐸 𝑥1 ⊂ 𝐾. Therefore ℎ is defined on [−1/𝑟, 1/𝑟] and ℎ𝜉 (𝑢) ∈ [0, 1] for all
𝑢 ∈ [−1/𝑟, 1/𝑟]. Hence, by Corollary 3.11,

lip[−1,1] (ℎ𝜉 ) ≤
𝑟

1 − 𝑟 . (6.2)
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Let 𝜈 be uniformly distributed on B𝑑1 .

E [ 𝑓 (𝑋) − 𝑠(𝑥)] = E
[
ℎ𝜉 (1/2) + ℎ𝜉 (∥𝜈∥) − 2ℎ𝜉 (∥𝜈∥ /2)

]
By Exercise 6.10

= E
[
(ℎ𝜉 (1/2) − ℎ𝜉 (∥𝜈∥ /2)) + (ℎ𝜉 (∥𝜈∥) − ℎ𝜉 (∥𝜈∥ /2))

]
≤ 𝑟

1 − 𝑟 E
[����12 − ∥𝜈∥

2

���� + ����∥𝜈∥ − ∥𝜈∥
2

����] By (6.2)

=
𝑟/2

1 − 𝑟 .

For part (4), by convexity E[ℎ𝜉 (𝑢)] ≥ E[ℎ𝜉 (0)] for all 𝑢 ∈ R. Hence

E [ 𝑓 (𝑋) − 𝑠(𝑥)] = E
[
ℎ𝜉 (1/2) + ℎ𝜉 (∥𝑣∥) − 2ℎ𝜉 (∥𝑣∥ /2)

]
By Exercise 6.10

≤ E
[
ℎ𝜉 (1/2) + ℎ𝜉 (∥𝑣∥) − 2ℎ𝜉 (0)

]
convexity

≤ E
[
(1/2 + ∥𝑣∥)(ℎ𝜉 (1) − ℎ𝜉 (0))

]
convexity

≤ 3
2
E

[
𝑓 (𝑥 + Σ1/2𝜉) − 𝑓 (𝑥)

]
since E[∥𝜈∥] ≤ 1

≤ 3𝛽
4
E

[
∥Σ1/2𝜉∥2] By Lemma 3.7

=
3𝛽 tr(Σ)

4𝑑
.

The last equality holds because E[∥Σ1/2𝜉∥2] = E[tr(𝜉𝜉⊤Σ)] = tr(E[𝜉𝜉⊤]Σ)
and E[𝜉𝜉⊤] = 1

𝑑
1 by a symmetry argument. Part (5) is left as a straightforward

exercise. □

Exercise 6.11 ⋆ Prove Lemma 6.9(5).

6.4 Algorithms and regret analysis

We start by studying an algorithm that relies on neither smoothness nor strong
convexity.
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1 args : l e a r n i n g r a t e 𝜂 > 0 , 𝑟 ∈ (0, 1)
2 f o r 𝑡 = 1 to 𝑛

3 compute 𝑥𝑡 = arg min𝑥∈int(𝐾 )
∑𝑡−1
𝑢=1 𝜂 ⟨𝑔𝑢, 𝑥⟩ + 𝑅(𝑥)

4 sample 𝜉𝑡 u n i f o r m l y from S𝑑−1
1

5 p l a y 𝑋𝑡 = 𝑥𝑡 + 𝑟
2𝑅

′′ (𝑥𝑡 )−1/2𝜉𝑡 and o b s e r v e 𝑌𝑡

6 compute g r a d i e n t 𝑔𝑡 =
4𝑑𝑌𝑡𝑅′′ (𝑥𝑡 ) (𝑋𝑡−𝑥𝑡 )

𝑟2

Algorithm 6.2: Follow-the-regularised-leader with ellipsoidal smoothing

Computation Algorithm 6.2 needs to compute three non-trivial problems:

◦ The optimisation problem in Line 3 is a self-concordant barrier minimisation
problem. Note in round 𝑡 = 1 we have 𝑥𝑡 = 0 since we assumed that 𝑅 is
minimised at 0. In subsequent rounds 𝑥𝑡 can be approximated to extreme
precision with 𝑂̃ (1) iterations of damped Newton method initialised at 𝑥𝑡−1
(Exercise 6.12). Hence the computation time dominated by the evaluation of
the Hessian of 𝑅 and a matrix inversion.

◦ You can sample from a sphere in 𝑂 (𝑑) time by sampling a 𝑑-dimensional
standard Gaussian and renormalising.

◦ The matrix inverse square root in Section 6.4 can be computed via singular
value decomposition, which has complexity 𝑂 (𝑑3).

Exercise 6.12 ⋆⋆� Prove that 𝑂̃ (1) iterations of damped Newton is
sufficient to approximate 𝑥𝑡 to extreme precision (quadratic rate). You may find
Lemma 6.4 useful, along with the notes by Nemirovski (1996).

The machinery developed in Section 6.3 combined with Theorem 6.5 can be
used to bound the regret of Algorithm 6.2.

Theorem 6.13 Suppose that

𝜂 = (𝜗 log(𝑛)) 3
4 𝑑−

1
2 𝑛−

3
4 and 𝑟 = min

(
1, 2𝑑

1
2 𝑛−

1
4 (𝜗 log(𝑛)) 1

4

)
.

Under Assumption 6.1 the expected regret of Algorithm 6.2 is upper bounded by

E[Reg𝑛] ≤ 1 + 4(𝜗 log(𝑛)) 1
4 𝑑

1
2 𝑛

3
4

Proof By definition, ∥𝑋𝑡 − 𝑥𝑡 ∥𝑥𝑡 =
𝑟
2 ≤ 1

2 and therefore 𝑋𝑡 ∈ 𝐸 𝑥𝑡1 ⊂ 𝐾 where
the inclusion follows from Lemma 6.2(1). Hence, the algorithm always plays
inside 𝐾. Using the fact that the losses are in ℱb it holds automatically that
Reg𝑛 ≤ 𝑛 and when 𝑟 > 1

2 this already implies the bound in the theorem.
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Suppose for the remainder that 𝑟 ≤ 1
2 . Similarly, for the same reason we may

suppose for the remainder that 𝑛 ≥ 4𝜗 log(𝑛). Let

𝐾1/𝑛 = {𝑥 ∈ 𝐾 : 𝜋(𝑥) ≤ 1 − 1/𝑛}

and 𝑥★ = arg min𝑥∈𝐾1/𝑛

∑𝑛
𝑡=1 𝑓𝑡 (𝑥) with ties broken arbitrarily. Such a point is

guaranteed to exist by Proposition 3.13, which also shows that

E[Reg𝑛] ≤ 1 + E[Reg𝑛 (𝑥★)] .

Before using Theorem 6.5 we need to confirm that 𝜂 ∥𝑔𝑡 ∥𝑥𝑡★ ≤ 1
2 .

𝜂 ∥𝑔𝑡 ∥𝑥𝑡★ =
4𝜂𝑑 |𝑌𝑡 |
𝑟2 ∥𝑅′′ (𝑥𝑡 ) (𝑋𝑡 − 𝑥𝑡 )∥𝑥𝑡★ =

2𝜂𝑑 |𝑌𝑡 |
𝑟

≤ 2𝜂𝑑
𝑟

≤ 1
2
,

where in the final inequality we used the assumption that 𝑛 ≥ 4𝜗 log(𝑛). Let
Σ𝑡 = 𝑟2𝑅′′ (𝑥𝑡 )−1 and 𝐸𝑡 = {𝑦 : ∥𝑥𝑡 − 𝑦∥Σ−1

𝑡
≤ 1} = 𝐸

𝑥𝑡
𝑟 . The surrogate in

round 𝑡 is

𝑠𝑡 (𝑥) =
1

vol(𝐸𝑡 )

∫
𝐸𝑡

(
2 𝑓𝑡 ( 1

2 𝑦 +
1
2𝑥) − 𝑓𝑡 (𝑦)

)
d𝑦 .

Hence, by Theorem 6.5 and the results in Section 6.3,

E[Reg𝑛] ≤ 1 + E

[
𝑛∑︁
𝑡=1

𝑓𝑡 (𝑋𝑡 ) − 𝑓𝑡 (𝑥★)
]

≤ 1 + 𝑛𝑟/2
1 − 𝑟 + E

[
𝑛∑︁
𝑡=1

𝑠𝑡 (𝑥𝑡 ) − 𝑠𝑡 (𝑥★)
]

Lemma 6.9(2)(3)

≤ 1 + 𝑛𝑟/2
1 − 𝑟 + E

[
𝑛∑︁
𝑡=1

〈
𝑠′𝑡 (𝑥𝑡 ), 𝑥𝑡 − 𝑥★

〉]
Lemma 6.9(1)

= 1 + 𝑛𝑟/2
1 − 𝑟 + E

[
𝑛∑︁
𝑡=1

⟨𝑔𝑡 , 𝑥𝑡 − 𝑥★⟩
]

Lemma 6.8

≤ 1 + 𝑛𝑟/2
1 − 𝑟 + 𝜗 log(𝑛)

𝜂
+ E

[
𝑛∑︁
𝑡=1

𝜂 ∥𝑔𝑡 ∥2
𝑥𝑡★

]
Theorem 6.5

≤ 1 + 𝑛𝑟 + 𝜗 log(𝑛)
𝜂

+ 4𝜂𝑛𝑑2

𝑟2 ,

where the final inequality follows since 𝑟 ≤ 1/2 and 𝑌𝑡 ∈ [0, 1] and

𝜂 ∥𝑔𝑡 ∥2
𝑥𝑡★

= 𝜂





4𝑑𝑌𝑡𝑅′′ (𝑥𝑡 ) (𝑋𝑡 − 𝑥𝑡 )
𝑟2





2

𝑥𝑡★

≤ 16𝜂𝑑2

𝑟4 ∥𝑋𝑡 − 𝑥𝑡 ∥2
𝑅′′ (𝑥𝑡 ) =

4𝜂𝑑2

𝑟2 .

The result follows by substituting the values of the constants. □
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Notice how the dependence on the diameter that appeared in Theorem 5.6
has been replaced with a dependence on the self-concordance parameter 𝜗 and
logarithmic dependence on the horizon. This can be a significant improvement.
For example, when 𝐾 is a ball, then the bound in Theorem 5.6 depends
linearly on

√︁
diam(𝐾) while with a suitable self-concordant barrier the regret in

Theorem 6.13 replaces this with
√︁

log(𝑛). Essentially what is happening is that
Algorithm 6.2 moves faster deep in the interior where the losses are necessarily
more Lipschitz while Algorithm 5.2 does not adapt the amount of regularisation
to the location of 𝑥𝑡 . For smooth functions the rate can be improved by using
Lemma 6.9(4) instead of Lemma 6.9(3).

Theorem 6.14 Suppose the losses are in ℱb,sm and there is no noise and

𝑟2 = min
(
4, 8 · 21/3 · 3−2/3𝑑

2
3 (𝜗 log(𝑛)) 1

3 𝛽−
2
3 diam(𝐾)− 4

3 𝑛−
1
3

)
and

𝜂 =
𝑟

2𝑑

√︂
𝜗 log(𝑛)

𝑛
.

Then the expected regret of Algorithm 6.2 is upper bounded by

E[Reg𝑛] ≤ 1 + 3𝑑
√︁
𝜗𝑛 log(𝑛) +

(
9
2

)2/3
(𝜗𝛽 diam(𝐾)2 log(𝑛)) 1

3 𝑑
2
3 𝑛

2
3 .

Proof Note the condition that 𝑟2 ≤ 4 is needed to ensure that 𝑋𝑡 ∈ 𝐾 . Repeat
the argument in the proof of Theorem 6.13 but replace Lemma 6.9(3) with
Lemma 6.9(4), which yields

E[Reg𝑛] ≤ 1 + 𝜗 log(𝑛)
𝜂

+ 4𝜂𝑛𝑑2

𝑟2 + 3𝛽𝑟2

4𝑑

𝑛∑︁
𝑡=1

tr(𝑅′′ (𝑥𝑡 )−1)

≤ 1 + 𝜗 log(𝑛)
𝜂

+ 4𝜂𝑛𝑑2

𝑟2 + 3𝛽𝑛𝑟2 diam(𝐾)2

16

= 1 + 4𝑑
𝑟

√︁
𝑛𝜗 log(𝑛) + 3𝛽𝑛𝑟2 diam(𝐾)2

16
where in the second inequality we used Lemma 6.2(3) and in the equality the
definition of 𝜂. The result follows by substituting the definition of 𝑟 and using
the fact that if 𝑟2 = 4, then

8 · 21/3 · 3−2/3𝑑2/3 (𝜗 log(𝑛))1/3𝛽−2/3 diam(𝐾)−4/3𝑛−1/3 ≥ 4 ,

which implies that 3𝛽𝑛𝑟2 diam(𝐾 )2

16 ≤ 𝑑
√︁
𝜗 log(𝑛). □

The diameter now appears in the bound, as it must. Otherwise you could scale
the coordinates and make the regret vanish (Section 3.3). There is no hope to
remove the

√
𝑛 term from Theorem 6.14, since when 𝛽 = 0 the losses are linear
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and the lower bound for linear bandits says the regret should be at least Ω(𝑑
√
𝑛)

(Dani et al., 2008).

6.5 Smoothness and strong convexity

We conclude the main body of this chapter by showing that a version of
follow-the-regularised-leader can achieve 𝑂 (

√
𝑛) regret for smooth and strongly

convex loss functions. The main modification of the algorithm is that the linear
surrogate loss functions are replaced by quadratics. For this a generalisation of
Theorem 6.5 is required.

Theorem 6.15 Suppose that ( 𝑓𝑡 )𝑛𝑡=1 is a sequence of self-concordant functions
from 𝐾 to R and let

𝑥𝑡 = arg min
𝑥∈𝐾

𝑅(𝑥) + 𝜂
𝑡−1∑︁
𝑢=1

𝑓𝑢 (𝑥)

Φ𝑡−1 (𝑥 )

and ∥·∥𝑥𝑡★ = ∥·∥Φ′′
𝑡 (𝑥𝑡 )−1 .

Then, provided that 𝜂∥ 𝑓 ′𝑡 (𝑥𝑡 )∥𝑥𝑡★ ≤ 1
2 for all 𝑡, for any 𝑥 ∈ int(𝐾),

R̂eg𝑛 (𝑥) =
𝑛∑︁
𝑡=1

(
𝑓𝑡 (𝑥𝑡 ) − 𝑓𝑡 (𝑥)

)
≤ 𝜗

𝜂
log

(
1

1 − 𝜋(𝑥)

)
+ 𝜂

𝑛∑︁
𝑡=1

∥ 𝑓 ′𝑡 (𝑥𝑡 )∥2
𝑥𝑡★

,

Theorem 6.5 is recovered by choosing 𝑓𝑡 (𝑥) = ⟨𝑔𝑡 , 𝑥⟩.

Proof By the definition of Φ𝑡 ,

R̂eg𝑛 (𝑥) =
𝑛∑︁
𝑡=1

(
𝑓𝑡 (𝑥𝑡 ) − 𝑓𝑡 (𝑥)

)
=

1
𝜂

𝑛∑︁
𝑡=1

(Φ𝑡 (𝑥𝑡 ) −Φ𝑡−1 (𝑥𝑡 )) −
Φ𝑛 (𝑥)
𝜂

+ 𝑅(𝑥)
𝜂

=
1
𝜂

𝑛∑︁
𝑡=1

(Φ𝑡 (𝑥𝑡 ) −Φ𝑡 (𝑥𝑡+1)) +
Φ𝑛 (𝑥𝑛+1)

𝜂
− Φ𝑛 (𝑥)

𝜂
+ 𝑅(𝑥) − 𝑅(𝑥1)

𝜂

≤ 1
𝜂

𝑛∑︁
𝑡=1

(Φ𝑡 (𝑥𝑡 ) −Φ𝑡 (𝑥𝑡+1)) +
𝑅(𝑥) − 𝑅(𝑥1)

𝜂
Φ𝑛 (𝑥𝑛+1) ≤ Φ𝑛 (𝑥)

≤ 𝜂
𝑛∑︁
𝑡=1

∥ 𝑓 ′𝑡 (𝑥𝑡 )∥2
𝑥𝑡★

+ 𝑅(𝑥) − 𝑅(𝑥1)
𝜂

Lemma 6.4

≤ 𝜗

𝜂
log

(
1

1 − 𝜋(𝑥)

)
+ 𝜂

𝑛∑︁
𝑡=1

∥ 𝑓𝑡 (𝑥𝑡 )∥2
𝑡★ , Lemma 6.2(4)
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where the application of Lemma 6.4 relied on the assumption that 𝜂∥ 𝑓 ′𝑡 (𝑥𝑡 )∥𝑡★ ≤
1
2 and the fact that 𝑥𝑡 minimises Φ𝑡−1 on int(𝐾), which implies that Φ′

𝑡 (𝑥𝑡 ) =
Φ′
𝑡−1 (𝑥𝑡 ) + 𝑓 ′𝑡 (𝑥𝑡 ) = 𝑓 ′𝑡 (𝑥𝑡 ). □

The algorithm for smooth and strongly convex losses uses follow-the-
regularised-leader with a self-concordant barrier and quadratic loss estimates.

1 args : l e a r n i n g r a t e 𝜂 > 0
2 f o r 𝑡 = 1 to 𝑛

3 l e t 𝑥𝑡 = arg min𝑥∈int(𝐾 )

[
𝑅(𝑥) + 𝜂∑𝑡−1

𝑢=1

(
⟨𝑔𝑢, 𝑥⟩ + 𝛼

4 ∥𝑥 − 𝑥𝑢∥2
)]

4 l e t Σ−1
𝑡 = 𝑅′′ (𝑥𝑡 ) + 𝜂𝛼𝑡

2 1

5 sample 𝜉𝑡 u n i f o r m l y from S𝑑−1
1

6 p l a y 𝑋𝑡 = 𝑥𝑡 + 1
2Σ

1/2
𝑡 𝜉𝑡 and o b s e r v e 𝑌𝑡

7 compute g r a d i e n t 𝑔𝑡 = 4𝑑𝑌𝑡Σ−1
𝑡 (𝑋𝑡 − 𝑥𝑡 )

Algorithm 6.3: Follow-the-regularised-leader with ellipsoidal smoothing

Let us think a little about why Algorithm 6.3 makes sense. As usual, let 𝑠𝑡
be the surrogate as defined in Section 6.3, which by Lemma 6.9 is 𝛼

4 -strongly
convex. The quantity 𝑔𝑡 is an unbiased estimator of 𝑠′𝑡 (𝑥𝑡 ). So Algorithm 6.3
is playing follow-the-regularised leader with quadratic approximations of 𝑠𝑡 .
The inverse covariance Σ−1

𝑡 is chosen to be the Hessian of the optimisation
objective to find 𝑥𝑡 . From a technical perspective this makes sense because the
covariance of the gradient estimator plays well with the dual norm in the last
term in Theorem 6.15. More intuitively, when the losses have high curvature,
then the algorithm needs to smooth on a smaller region which corresponds to a
larger inverse covariance. This introduces additional variance in the gradient
estimators, which is offset by the regularisation arising from strong convexity.

Theorem 6.16 Suppose the losses are in ℱb,sm,sc and there is no noise and

𝜂 =
1

2𝑑

√︄
𝜗 log(𝑛) + 3𝛽

2𝛼 [1 + log(𝑛)]
𝑛

.

Then the expected regret of Algorithm 6.3 is upper bounded by

E[Reg𝑛] ≤ 1 + 4𝑑

√︄
𝑛

(
𝜗 log(𝑛) + 3𝛽

2𝛼
(1 + log(𝑛))

)
.

Proof Assume that 𝑛 ≥ 4(𝜗 log(𝑛) + 2𝛽
𝛼
(1 + log(𝑛)), since otherwise the

regret bound holds trivially using the assumption that the losses are bounded so
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that E[Reg𝑛] ≤ 𝑛. The same argument in the proof of Theorem 6.13 shows that
𝑋𝑡 is in the Dikin ellipsoid associated with 𝑅 at 𝑥𝑡 and therefore is in 𝐾. Let
𝐸𝑡 = 𝐸 (𝑥𝑡 , Σ𝑡 ) and

𝑠𝑡 =
1

vol(𝐸𝑡 )

∫
𝐸𝑡

(
2 𝑓𝑡 ( 1

2𝑥𝑡 +
1
2 𝑧) − 𝑓𝑡 (𝑧)

)
d𝑧 ,

which is the optimistic surrogate from Section 6.3. Like in Theorem 6.13, let
𝐾1/𝑛 = {𝑥 ∈ 𝐾 : 𝜋(𝑥) ≤ 1− 1/𝑛} and 𝑥★ = arg min𝑥∈𝐾1/𝑛

∑𝑛
𝑡=1 𝑓𝑡 (𝑥), which by

Proposition 3.13 and Lemma 6.9(2)(4) means that

E[Reg𝑛] ≤ 1 + E[Reg𝑛 (𝑥★)]

= 1 + E

[
𝑛∑︁
𝑡=1

( 𝑓𝑡 (𝑋𝑡 ) − 𝑓𝑡 (𝑥★))
]

≤ 1 + E

[
𝑛∑︁
𝑡=1

(
𝑠𝑡 (𝑥𝑡 ) − 𝑠𝑡 (𝑥★) +

3𝛽
4𝑑

tr(Σ𝑡 )
)]
.

Next, let 𝑓𝑡 (𝑥) = ⟨𝑔𝑡 , 𝑥 − 𝑥𝑡 ⟩+ 𝛼
4 ∥𝑥 − 𝑥𝑡 ∥2. By Lemma 6.9(5), 𝑠𝑡 is 𝛼

2 -strongly
convex and therefore

E

[
𝑛∑︁
𝑡=1

(𝑠𝑡 (𝑥𝑡 ) − 𝑠𝑡 (𝑥★))
]
≤ E

[
𝑛∑︁
𝑡=1

(
⟨E𝑡−1 [𝑔𝑡 ], 𝑥𝑡 − 𝑥★⟩ −

𝛼

4
∥𝑥𝑡 − 𝑥★∥2

)]
= E

[
𝑛∑︁
𝑡=1

( 𝑓𝑡 (𝑥𝑡 ) − 𝑓𝑡 (𝑥★))
]

≤ 𝜗 log(𝑛)
𝜂

+ 𝜂E
[
𝑛∑︁
𝑡=1

∥𝑔𝑡 ∥2
Σ𝑡

]
Theorem 6.15

≤ 𝜗 log(𝑛)
𝜂

+ 4𝜂𝑛𝑑2 .

The application of Theorem 6.15 relies on 𝜂 ∥𝑔𝑡 ∥Σ𝑡 ≤
1
2 , which follows from the

definition of 𝜂 and our assumption that 𝑛 is large enough. Using the definition
of Σ𝑡 ,

3𝛽
4𝑑

𝑛∑︁
𝑡=1

tr(Σ𝑡 ) ≤
3𝛽

2𝛼𝜂

𝑛∑︁
𝑡=1

1
𝑡
≤ 3𝛽

2𝛼𝜂
(1 + log(𝑛)) .

Combining everything shows that

E[Reg𝑛] ≤ 1 + 4𝜂𝑛𝑑2 + 1
𝜂

(
𝜗 log(𝑛) + 3𝛽

2𝛼
(1 + log(𝑛))

)
.

The result follows by substituting the definition of 𝜂. □
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6.6 Stochastic setting and variance ( )

In most of this book it as assumed that the losses are bounded in [0, 1] and the
noise is subgaussian. You may wonder what happens in the stochastic setting if
the variance of the noise is much smaller than the range of the loss function.
Note, there is nothing substantive to be gained in the adversarial setting since
the loss functions themselves can be noisy. In this section we explain one way
to handle this situation by slightly modifying Algorithm 6.2 and showing how
its regret depends on the variance of the noise. The modification and analysis
used here generalises to all the other results in this chapter and many beyond.
The operating assumption in this section is the following:

Assumption 6.17 The setting is stochastic: 𝑓𝑡 = 𝑓 for all rounds with 𝑓 ∈ ℱb.
The observed loss is 𝑌𝑡 = 𝑓 (𝑋𝑡 ) + 𝜀𝑡 where the noise 𝜀𝑡 satisfies:

(1) (zero mean): E𝑡−1 [𝜀𝑡 |𝑋𝑡 ] = 0; and

(2) (boundedness): |𝜀𝑡 | ≤ 1 almost surely; and

(3) (variance): E𝑡−1 [𝜀2
𝑡 |𝑋𝑡 ] ≤ 𝜎2 for some known 𝜎 > 0.

Remark 6.18 The boundedness assumption could be relaxed with minor
modifications to the analysis if we instead assumed that 𝜀𝑡 was conditionally
𝜎-subgaussian: E𝑡−1 [exp(𝜀2

𝑡 /𝜎2) |𝑋𝑡 ] ≤ 2.

Let odd(𝑡) be the set of odd natural numbers less than or equal to 𝑡. We assume
for simplicity that the horizon 𝑛 is even so that odd(𝑛) = {1, 3, . . . , 𝑛 − 1}.

1 args : l e a r n i n g r a t e 𝜂 > 0 , 𝑟 ∈ (0, 1)
2 f o r 𝑡 ∈ odd(𝑛) :
3 compute 𝑥𝑡 = arg min𝑥∈int(𝐾 )

∑
𝑢∈odd(𝑡−1) 𝜂 ⟨𝑔𝑢, 𝑥⟩ + 𝑅(𝑥)

4 sample 𝜉𝑡 u n i f o r m l y from S𝑑−1
1

5 p l a y 𝑋𝑡 = 𝑥𝑡 and o b s e r v e 𝑌𝑡

6 p l a y 𝑋𝑡+1 = 𝑥𝑡 + 𝑟
2𝑅

′′ (𝑥𝑡 )−1/2𝜉𝑡 and o b s e r v e 𝑌𝑡+1

7 compute g r a d i e n t 𝑔𝑡 =
4𝑑 (𝑌𝑡+1−𝑌𝑡 )𝑅′′ (𝑥𝑡 ) (𝑋𝑡+1−𝑥𝑡 )

𝑟2

Algorithm 6.4: Follow-the-regularised-leader with ellipsoidal smoothing



72 Self-concordant regularisation

Theorem 6.19 Suppose that Algorithm 6.4 is run with parameters

𝑟 = max

(
𝑑

√︂
𝜗 log(𝑛)

𝑛
, 𝑑1/2𝜎1/2𝑛−1/4 (𝜗 log(𝑛))1/4

)
and

𝜂 =
1

12𝑑

√︂
𝜗 log(𝑛)

𝑛
min

( 𝑟
𝜎
, 1

)
.

Then, under Assumption 6.17, the regret is bounded by

E[Reg𝑛] = 𝑂
(
𝑑
√︁
𝑛𝜗 log(𝑛) + 𝜎1/2𝑑1/2 (𝜗 log(𝑛))1/4𝑛3/4

)
.

When 𝑛 is large, then the bound in Theorem 6.19 improves on the bound in
Theorem 6.13 by a factor of 𝜎1/2. Alternatively, if the noise vanishes, the rate
improves to 𝑂̃ (𝑛1/2). The noise free setting is quite special, since in this case
there exist algorithms with much smaller sample complexity or regret (Yudin
and Nemirovskii, 1976; Protasov, 1996). Nevertheless, in intermediate regimes
the improvement is non-negligible.

Proof Without loss of generality assume that 𝑟 ≤ 1/2, since otherwise the
claimed regret bound holds vacuously for any algorithm.

Exercise 6.20 Suppose that 𝑡 ∈ odd(𝑛). Show that | 𝑓 (𝑋𝑡 ) − 𝑓 (𝑋𝑡+1) | ≤ 𝑟/2.

Suppose that 𝑡 ∈ odd(𝑛). By definition,

𝜂 ∥𝑔𝑡 ∥𝑥𝑡★ =
4𝜂𝑑 |𝑌𝑡+1 − 𝑌𝑡 |

𝑟2 ∥𝑅′′ (𝑥𝑡 ) (𝑋𝑡 − 𝑥𝑡 )∥𝑥𝑡★

=
2𝜂𝑑 |𝑌𝑡+1 − 𝑌𝑡 |

𝑟

(a)

≤ 6𝜂𝑑
𝑟

(b)

≤ 1
2
,

where (a) follows from Assumption 6.17(2) and the definitions to bound
|𝑌𝑡+1 − 𝑌𝑡 | ≤ 3 and (b) from the definitions of 𝜂 and 𝑟. Hence, repeating
more-or-less exactly the proof of Theorem 6.13 shows that

E[Reg𝑛] ≤ 1 + 𝑛𝑟 + 𝜗 log(𝑛/2)
𝜂

+ E


∑︁

𝑡∈odd(𝑛)
𝜂 ∥𝑔𝑡 ∥2

𝑥𝑡★

 . (6.3)

Moreover, when 𝑡 ∈ odd(𝑛),

𝜂 ∥𝑔𝑡 ∥2
𝑥𝑡★

= 𝜂





4𝑑 (𝑌𝑡+1 − 𝑌𝑡 )𝑅′′ (𝑥𝑡 ) (𝑋𝑡 − 𝑥𝑡 )
𝑟2





2

𝑥𝑡★

≤ 4𝜂𝑑2 (𝑌𝑡+1 − 𝑌𝑡 )2

𝑟2 . (6.4)
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The expectation of (𝑌𝑡+1 − 𝑌𝑡 )2 is bounded by

E[(𝑌𝑡+1 − 𝑌𝑡 )2] = E[( 𝑓 (𝑋𝑡+1) + 𝜀𝑡+1 − 𝑓 (𝑋𝑡 ) − 𝜀𝑡 )2]
(a)

≤ E[( 𝑓 (𝑋𝑡+1) − 𝑓 (𝑥𝑡 ))2] + E[(𝜀𝑡 − 𝜀𝑡+1)2]
(b)

≤ E[( 𝑓 (𝑋𝑡+1) − 𝑓 (𝑥𝑡 ))2] + 2𝜎2

(c)

≤ 𝑟2

4
+ 2𝜎2 .

where (a) and (b) follow from Assumption 6.17 and (c) since | 𝑓 (𝑋𝑡+1) −
𝑓 (𝑥𝑡 ) | ≤ 𝑟/2 by Exercise 6.20. Therefore

E


∑︁

𝑡∈odd(𝑛)
(𝑌𝑡+1 − 𝑌𝑡 )2

 ≤ 𝑛𝜎2 + 𝑛𝑟2

8
.

Combining this with (6.3) and (6.4) shows that

E[Reg𝑛] ≤ 1 + 𝑛𝑟 + 𝜗 log(𝑛/2)
𝜂

+ 4𝜂𝑑2

𝑟2 E


∑︁

𝑡∈odd(𝑛)
(𝑌𝑡+1 − 𝑌𝑡 )2


≤ 1 + 𝑛𝑟 + 𝜗 log(𝑛/2)

𝜂
+ 4𝜂𝑑2

𝑟2

(
𝑛𝜎2 + 𝑛𝑟2

8

)
.

The claim now follows by substituting the constants and naive simplification. □

Exercise 6.21 ⋆⋆? Explore the possiblity of using the technique developed
here for other algorithms in this book.

6.7 Notes

6.i: The notion of self-concordance was introduced and refined by Nesterov
(1988) and Nesterov and Nemirovsky (1989), which they applied to interior point
methods. As far as we know the first application of self-concordance to bandits
was by Abernethy et al. (2008), who studied linear bandits. Theorem 6.13 seems
to be new while Theorem 6.14 is by Saha and Tewari (2011). Algorithm 6.3 and
Theorem 6.16 are due to Hazan and Levy (2014). The case where there is noise
was studied recently by Akhavan et al. (2024a, Theorem 8), who also explains
how to use a decreasing learning rate to avoid the algorithm needing to know
the learning rate.

6.ii: At no point in this chapter did we need Lipschitz losses. The analysis
essentially exploits the fact that convex functions cannot have large gradients
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except very close to the boundary where the regularisation provided by the
self-concordant barrier prevents the blowup in variance from severely impacting
the regret.

6.iii: We have made several improvements to the statistical efficiency relative
to the algorithm presented in Chapter 5. In exchange the algorithms are more
complicated and computationally less efficient. Algorithms based on gradient
descent run in 𝑂 (𝑑) time per round except those rounds where a projection is
needed. Furthermore, even when the projection is needed it is with respect to
the euclidean norm and likely to be extremely fast. Meanwhile the algorithms
in this chapter need a singular value decomposition to compute 𝑋𝑡 , solve an
optimisation problem to find 𝑥𝑡 and need oracle access to a 𝜗-self-concordant
barrier.

6.iv: The reader interested in knowing more about (𝜗-)self-concordant
barriers is referred to the wonderful notes by Nemirovski (1996). The most
obvious question is whether or not these things even exist. Here are some
examples:

◦ When 𝐾 = {𝑥 : ⟨𝑎𝑖 , 𝑥⟩ ≤ 𝑏𝑖 , 1 ≤ 𝑖 ≤ 𝑘} is a polytope defined by 𝑘 half-
spaces, then 𝑅(𝑥) = −∑𝑘

𝑖=1 log(𝑏𝑖 − ⟨𝑎𝑖 , 𝑥⟩) is called the logarithmic barrier
and is 𝑘-self-concordant.

◦ When 𝐾 = {𝑥 : ∥𝑥∥ ≤ 𝜌} is a ball, then 𝑅(𝑥) = − log(𝜌2 − ∥𝑥∥2) is a
1-self-concordant barrier on 𝐾 .

◦ For any convex body 𝐾 there exists a 𝜗-self-concordant barrier with 𝜗 ≤ 𝑑.
Specifically, the entropic barrier (Chewi, 2023; Bubeck and Eldan, 2014)
and the universal barrier (Nesterov and Nemirovski, 1994; Lee and Yue,
2021) satisfy this.

6.v: The surrogate loss only appears in the analysis. Interestingly, Hazan and
Levy (2014) and Saha and Tewari (2011) analysed their algorithms using the
surrogate

𝑠𝑡 (𝑦) =
1

vol(𝐸 𝑥𝑡𝑟 )

∫
𝐸
𝑥𝑡
𝑟 −𝑥𝑡

𝑓𝑡 (𝑦 + 𝑢) d𝑢 ,

which is the ellipsoidal analogue of the surrogate used in Chapter 5. Except
for a constant factor this surrogate has the same gradient at 𝑥𝑡 as the surrogate
we used, which means the resulting algorithms are the same. The difficulty is
that the surrogate defined above is not defined on all of 𝐾 , which forces various
contortions or assumptions in the analysis.

6.vi: We promised to explain why there are problems at the boundary
when analysing gradient descent with smoothness and/or strong convexity. By
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repeating the analysis in Chapter 5, but exploiting smoothness you can prove
that

E[Reg𝑛] ≤ 𝑟𝑛 +
diam(𝐾)2

2𝜂
+ 𝜂𝑛𝑑2

2𝑟2 + 𝛽𝑛𝑟2

2
,

where the first term arises because it is still necessary to enforce the iterates of the
algorithm to lie in 𝐾𝑟 = {(1−𝑟)𝑥 : 𝑥 ∈ 𝐾}, since otherwise the algorithm might
play outside 𝐾 . But now even when 𝛽 = 0 there is no tuning of the algorithm for
which the regret is E[Reg𝑛] = 𝑜(𝑛3/4), while with self-concordance the regret
of Algorithm 6.2 is

E[Reg𝑛] = 𝑂
(
𝑑
√︁
𝜗𝑛 log(𝑛) + (𝜗𝛽 log(𝑛)) 1

3 (𝑑 diam(𝐾)) 1
2 𝑛

2
3

)
𝛽=0
= 𝑂

(
𝑑
√︁
𝜗𝑛 log(𝑛)

)
.

6.vii: As noted above, even when 𝛽 = 0 the regret upper bound of Algo-
rithm 6.2 is still Ω(

√
𝑛). Since 𝛽 = 0 corresponds to linear losses, the lower

bounds for linear bandits (Table 2.1) show that this is not improvable. Hence, no
amount of smoothness by itself can improve the regret beyond the

√
𝑛 barrier.

Combining higher-order smoothness (see Note 1.i) with strong convexity,
however, does lead to improved regret (Polyak and Tsybakov, 1990; Akhavan
et al., 2020; Novitskii and Gasnikov, 2021; Akhavan et al., 2024b). These
works prove upper and lower bounds showing that the minimax simple regret
is Θ(𝑛(1−𝑝)/𝑝) in the unconstrained and improper settings and with slightly
varying assumptions and dependence on the constants. This is much better than
𝑂 (1/

√
𝑛) when 𝑝 ≫ 2. Of these, the most refined is by Akhavan et al. (2024b),

who prove an upper bound on the simple regret𝑂 ( 1
𝛼
(𝑑2/𝑛) (𝑝−1)/𝑝) and a lower

bound on the same of Ω( 𝑑
𝛼
𝑛−(𝑝−1)/𝑝), which match when 𝑝 = 2. Note that

the correct dependence on the smoothness parameter 𝛽 has not yet been nailed
down and there are some mild conditions on the magnitude of 𝑛, 𝑑 and 𝛼. The
aforementioned works also study a variety of alternatives to strong convexity
and more flexible noise models than what is assumed in this book.

6.viii: Theorems 6.13 and 6.14 bound the regret for the same algorithm
with different learning rates and smoothing parameters. You should wonder
if it is possible to obtain the best of both bounds with a single algorithm by
adaptively tuning the learning rates. At present this is not known as far as we
know.

6.ix: As far as we know Theorem 6.19 is new but the idea is standard
(Akhavan et al., 2024b, and many others).



7
Linear and quadratic bandits

Function classes like ℱb are non-parametric. In this chapter we shift gears
by studying two important parametric classes: ℱb,lin and ℱb,quad. The main
purpose of this chapter is to use the machinery designed for linear bandits to
prove an upper bound on the minimax regret for quadratic bandits. On the
positive side the approach is both elementary and instructive. More negatively,
the resulting algorithm is not computationally efficient. Before the algorithms
and regret analysis we need three tools: covering numbers, optimal experimental
design and the exponential weights algorithm.

7.1 Covering numbers

Given 𝐴, 𝐵 ⊂ R𝑑 , the external/internal covering numbers are defined by

𝑁 (𝐴, 𝐵) = min

{
|C | : C ⊂ R𝑑 , 𝐴 ⊂

⋃
𝑥∈C

(𝑥 + 𝐵)
}

and

𝑁̄ (𝐴, 𝐵) = min

{
|C | : C ⊂ 𝐴, 𝐴 ⊂

⋃
𝑥∈C

(𝑥 + 𝐵)
}
.

Both are the smallest number of translates of 𝐵 needed to cover 𝐴 with the
latter demanding that the ‘centers’ are in 𝐴. Obviously 𝑁 (𝐴, 𝐵) ≤ 𝑁̄ (𝐴, 𝐵).
The inequality can also be strict, as you will show in the following exercise.

Exercise 7.1 ⋆ Suppose that 𝐴, 𝐵, 𝐶 ⊂ R𝑑 and 𝐴 ⊂ 𝐵. Show the following:

(1) 𝑁 (𝐴,𝐶) ≤ 𝑁̄ (𝐴,𝐶) and give an example where 𝑁 (𝐴,𝐶) < 𝑁̄ (𝐴,𝐶).
(2) 𝑁 (𝐴,𝐶) ≤ 𝑁 (𝐵,𝐶) and give an example where 𝑁̄ (𝐴,𝐶) > 𝑁̄ (𝐵,𝐶) .
(3) 𝑁̄ (𝐴,𝐶 − 𝐶) ≤ 𝑁 (𝐴,𝐶).

76
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The next proposition follows from Fact 4.1.4 and Corollary 4.1.15 in the book
by Artstein-Avidan et al. (2015).

Proposition 7.2 Suppose that 𝐴 ⊂ R𝑑 is centrally symmetric, compact and
convex. Then, for any 𝜀 ∈ (0, 1),

𝑁̄ (𝐴, 𝜀𝐴) ≤ 𝑁 (𝐴, 𝜀2 𝐴) ≤
(
1 + 4

𝜀

)𝑑
.

Proposition 7.3 Suppose that 𝐾 ⊂ R𝑑 is compact and 𝐴 = conv(𝐾 − 𝐾).
Then

𝑁̄ (𝐾, 𝜀𝐴) ≤
(
1 + 4

𝜀

)𝑑
.

Proof Since 𝐴 is symmetric, 𝐴 − 𝐴 = 2𝐴. By your solution to Exer-
cise 7.1(3)(2) and Proposition 7.2, and letting 𝑥 ∈ 𝐾 be arbitrary,

𝑁̄ (𝐾, 𝜀𝐴) ≤ 𝑁 (𝐾, 𝜀2 𝐴) = 𝑁 (𝐾 − {𝑥}, 𝜀2 𝐴) ≤ 𝑁 (𝐴, 𝜀2 𝐴) ≤
(
1 + 4

𝜀

)𝑑
. □

Proposition 7.4 Suppose that 𝜀 ∈ (0, 1) and 𝐴 ⊂ B𝑑𝑟 with 𝑟 ≥ 𝜀. Then

𝑁̄ (𝐴,B𝑑𝜀) ≤
(
1 + 4𝑟

𝜀

)𝑑
.

Proof By Exercise 7.1(3)(2) and Proposition 7.2,

𝑁̄ (𝐴,B𝑑𝜀) ≤ 𝑁 (𝐴,B𝑑
𝜀/2) ≤ 𝑁 (B𝑑𝑟 ,B𝑑𝜀/2) = 𝑁 (B𝑑𝑟 , 𝜀2𝑟B

𝑑
𝑟 ) ≤

(
1 + 4𝑟

𝜀

)𝑑
. □

7.2 Optimal design

Suppose that 𝐴 is a nonempty compact subset of R𝑑 and 𝜃 ∈ R𝑑 is unknown.
A learner samples 𝑋 from some probability measure 𝜋 on 𝐴 and observes
𝑌 = ⟨𝑋, 𝜃⟩. How can this information be used to estimate 𝜃? A simple idea is to
use importance-weighted least squares. Let 𝐺 𝜋 =

∫
𝐴
𝑥𝑥⊤ d𝜋(𝑥), which is called

the design matrix. Assume for a moment that 𝐺 𝜋 is invertible and let

𝜃 = 𝐺−1
𝜋 𝑋𝑌 .

A simple calculation shows that E[𝜃] = 𝜃, which implies that E[⟨𝜃, 𝑥⟩] = ⟨𝑥, 𝜃⟩
for all 𝑥 ∈ 𝐴. So ⟨𝜃, 𝑥⟩ is an unbiased estimator of ⟨𝑥, 𝜃⟩. Assuming that
⟨𝑥, 𝜃⟩ ∈ [0, 1] for all 𝑥 ∈ 𝐴, then the second moment is bounded by

E
[
⟨𝜃, 𝑥⟩2] = E

[
𝑌2𝑥⊤𝐺−1

𝜋 𝑋𝑋
⊤𝐺−1

𝜋 𝑥
]
≤ E

[
𝑥⊤𝐺−1

𝜋 𝑋𝑋
⊤𝐺−1

𝜋 𝑥
]
= ∥𝑥∥2

𝐺−1
𝜋
.
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The following theorem shows there exists a 𝜋 such that the right-hand side is at
most 𝑑 for all 𝑥 ∈ 𝐴.

Theorem 7.5 (Kiefer and Wolfowitz 1960) For any nonempty compact 𝐴 ⊂ R𝑑

with span(𝐴) = R𝑑 there exists a probability measure 𝜋 supported on a subset
of 𝐴 such that 𝐺 𝜋 =

∫
𝐴
𝑥𝑥⊤ d𝜋(𝑥) is invertible and

∥𝑥∥2
𝐺−1
𝜋

≤ 𝑑 for all 𝑥 ∈ 𝐴 .

Remarkably the constant 𝑑 is the best achievable for any compact 𝐴 with
span(𝐴) = R𝑑 in the sense that:

min
𝜋∈Δ(𝐴)

max
𝑥∈𝐴

∥𝑥∥2
𝐺−1
𝜋

= 𝑑 .

The assumption that span(𝐴) = R𝑑 was more or less only needed to ensure
that 𝐺 𝜋 is invertible. Given a matrix 𝑄 let 𝑄+ be the pseudoinverse (see
Section A.2).

Theorem 7.6 For any nonempty compact 𝐴 ⊂ R𝑑 there exists a probability
measure 𝜋 supported on a subset of 𝐴 such that 𝐴 ⊂ im(𝐺⊤

𝜋) and

∥𝑥∥2
𝐺+
𝜋
≤ dim(span(𝐴)) for all 𝑥 ∈ 𝐴 ,

where 𝐺 𝜋 =
∫
𝐴
𝑥𝑥⊤𝑑𝜋(𝑥).

The requirement in Theorem 7.6 that 𝐴 ⊂ im(𝐺⊤
𝜋) is essential and corresponds

to 𝐺 𝜋 being invertible when restricted to the subspace spanned by 𝐴.

Exercise 7.7 ⋆ Prove Theorem 7.6.

7.3 Exponential weights

Let C be a finite set and ℓ1, . . . , ℓ𝑛 a sequence of functions from C → R. The
set C is sometimes referred to as the set of experts and ℓ𝑡 (𝑎) is the loss suffered
by expert 𝑎 in round 𝑡. A learner chooses a sequence of probability distributions
(𝑞𝑡 )𝑛𝑡=1 in Δ(C ) where 𝑞𝑡 can depend on ℓ1, . . . , ℓ𝑡−1. Note that this is not a
bandit setting. The entire loss function ℓ𝑡 is observed after round 𝑡. The learner’s
aim is to be competitive with the best expert in hindsight, which is measured by
the regret

R̂eg𝑛 = max
𝑏∈C

𝑛∑︁
𝑡=1

[∑︁
𝑎∈C

𝑞𝑡 (𝑎)ℓ𝑡 (𝑎) − ℓ𝑡 (𝑏)
]
.
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The quantity
∑
𝑎∈C 𝑞𝑡 (𝑎)ℓ𝑡 (𝑎) is the average loss suffered by the learner if they

follow the advice of expert 𝑎 with probability 𝑞𝑡 (𝑎). Given a learning rate 𝜂 > 0
define a distribution 𝑞𝑡 on C by

𝑞𝑡 (𝑎) =
exp

(
−𝜂∑𝑡−1

𝑢=1 ℓ𝑢 (𝑎)
)

∑
𝑏∈C exp

(
−𝜂∑𝑡−1

𝑢=1 ℓ𝑢 (𝑏)
) , (7.1)

which is called the exponential weights distribution. Staring at the definition
you can see that 𝑞𝑡 puts more mass relatively speaking on experts for which
the cumulative loss is smaller. That exponential weights has small regret is
perhaps the most fundamental result in online learning, as illustrated by the
many applications and implications (Cesa-Bianchi and Lugosi, 2006).

Theorem 7.8 Suppose that 𝜂 |ℓ𝑡 (𝑎) | ≤ 1 for all 1 ≤ 𝑡 ≤ 𝑛, then the regret when
𝑞𝑡 is given by (7.1) is upper bounded by

R̂eg𝑛 ≤
log |C |
𝜂

+ 𝜂
𝑛∑︁
𝑡=1

∑︁
𝑎∈C

𝑞𝑡 (𝑎)ℓ𝑡 (𝑎)2 .

Remark 7.9 There is no convexity here but the bound in Theorem 7.8 has some
kind of symbolic resemblance to the bounds for gradient descent and follow-the-
regularised-leader (for example, Theorem 5.2). This is no accident. Exponential
weights is equivalent to follow-the-regularised-leader on the convex space of
probability measures Δ(C ) with unnormalised negentropy regularisation. The
map Δ(C ) : 𝑞 ↦→ ∑

𝑎∈C 𝑞(𝑎)ℓ𝑡 (𝑎) is linear and hence the tools from convex
optimisation can be used.

Proof of Theorem 7.8 The following two inequalities provide crude explicit
bounds on the series expansion of exp(·):

exp(−𝑥) ≤ 1 − 𝑥 + 𝑥2 for all 𝑥 ≥ −1 ; and (7.2)
log(1 + 𝑥) ≤ 𝑥 for all 𝑥 > −1 . (7.3)

Let 𝑏 ∈ C and 𝐷𝑡 = log(1/𝑞𝑡 (𝑏)). Note that 𝑞𝑡+1 is the probability distribution
with

𝑞𝑡+1 (𝑏) ∝ exp

(
−𝜂

𝑡∑︁
𝑢=1

ℓ𝑢 (𝑏)
)
= exp (−𝜂ℓ𝑡 (𝑏)) exp

(
−𝜂

𝑡−1∑︁
𝑢=1

ℓ𝑢 (𝑏)
)

∝𝑞𝑡

.

Therefore

𝑞𝑡+1 (𝑏) =
𝑞𝑡 (𝑏) exp(−𝜂ℓ𝑡 (𝑏))∑
𝑎∈C 𝑞𝑡 (𝑎) exp(−𝜂ℓ𝑡 (𝑎))

.
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Then,

𝐷𝑡+1 = log
(

1
𝑞𝑡+1 (𝑏)

)
= log

(∑
𝑎∈C 𝑞𝑡 (𝑎) exp (−𝜂ℓ𝑡 (𝑎))
𝑞𝑡 (𝑏) exp (−𝜂ℓ𝑡 (𝑏))

)
= 𝐷𝑡 + log

(∑︁
𝑎∈C

𝑞𝑡 (𝑎) exp (−𝜂ℓ𝑡 (𝑎))
)
+ 𝜂ℓ𝑡 (𝑏)

≤ 𝐷𝑡 + log

(∑︁
𝑎∈C

𝑞𝑡 (𝑎)
[
1 − 𝜂ℓ𝑡 (𝑎) + 𝜂2ℓ𝑡 (𝑎)2] ) + 𝜂ℓ𝑡 (𝑏) by (7.2)

= 𝐷𝑡 + log

(
1 +

∑︁
𝑎∈C

𝑞𝑡 (𝑎)
[
−𝜂ℓ𝑡 (𝑎) + 𝜂2ℓ𝑡 (𝑎)2] ) + 𝜂ℓ𝑡 (𝑏)

≤ 𝐷𝑡 − 𝜂
[∑︁
𝑎∈C

𝑞𝑡 (𝑎)ℓ𝑡 (𝑎) − 𝜂ℓ𝑡 (𝑏)
]
+ 𝜂2

∑︁
𝑎∈C

𝑞𝑡 (𝑎)ℓ𝑡 (𝑎)2 . by (7.3)

Rearranging and summing over 𝑡 and telescoping yields
𝑛∑︁
𝑡=1

(∑︁
𝑎∈C

𝑞𝑡 (𝑎)ℓ𝑡 (𝑎) − ℓ𝑡 (𝑏)
)
≤ 1
𝜂

log
(
𝑞𝑛+1 (𝑏)
𝑞1 (𝑏)

)
+ 𝜂

𝑛∑︁
𝑡=1

∑︁
𝑎∈C

𝑞𝑡 (𝑎)ℓ𝑡 (𝑎)2

≤ 1
𝜂

log ( |C |) + 𝜂
𝑛∑︁
𝑡=1

∑︁
𝑎∈C

𝑞𝑡 (𝑎)ℓ𝑡 (𝑎)2 ,

where in the final inequality we used the fact that log(𝑞𝑛+1 (𝑏)) ≤ 0 and
𝑞1 (𝑏) = 1/|C |. Since the above calculations hold for any 𝑏 ∈ C we are free to
take the maximum on the left-hand side, which yields the theorem. □

Remark 7.10 When ℓ𝑡 (𝑎) ≥ 0 for all 𝑡 and 𝑎 ∈ C , then the bound improves to

max
𝑏∈C

𝑛∑︁
𝑡=1

(∑︁
𝑎∈C

𝑞𝑡 (𝑎)ℓ𝑡 (𝑎) − ℓ𝑡 (𝑏)
)
≤ log |C |

𝜂
+ 𝜂

2

𝑛∑︁
𝑡=1

∑︁
𝑎∈C

𝑞𝑡 (𝑎)ℓ𝑡 (𝑎)2 .

The proof is the same except you may now use that exp(−𝑥) ≤ 1 − 𝑥 + 𝑥2/2 for
𝑥 ≥ 0.

7.4 Continuous exponential weights

The material in this section is not used by any algorithm in this book. It is
included it because it played a fundamental role in one of the most influential
papers on convex bandits (Bubeck et al., 2017) and may be useful in future
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algorithms. The exponential weights distribution in (7.1) is defined only for
finite C . This is sometimes desirable, as we discuss in Note 7.vi. Generally
though, in applications to convex bandits you need C to be a cover of 𝐾 and for
this |C | is exponentially large in the dimension. This is not such a problem from
a sample efficiency perspective (|C | appears in a logarithm in Theorem 7.8)
but is a disaster computationally. Continuous exponential weights is a beautiful
alternative that sometimes leads to computational improvements. Suppose that
vol(𝐾) > 0 and let ℓ1, . . . , ℓ𝑛 : 𝐾 → R be a sequence of measurable functions.
The continuous exponential weights distribution is

𝑞𝑡 (𝑥) =
exp

(
−𝜂∑𝑡−1

𝑠=1 ℓ𝑠 (𝑥)
)

∫
𝐾

exp
(
−𝜂∑𝑡−1

𝑠=1 ℓ𝑠 (𝑦)
)

d𝑦
,

which, provided it exists, is a density supported on 𝐾. Given a probability
density 𝑝 supported on 𝐾 , let

R̂eg𝑛 (𝑝) =
𝑛∑︁
𝑡=1

∫
𝐾

ℓ𝑡 (𝑥) (𝑞𝑡 (𝑥) − 𝑝(𝑥)) d𝑥 ,

which is the regret of continuous exponential weights relative to the density 𝑝.

Theorem 7.11 Suppose that 𝜂 |ℓ𝑡 (𝑥) | ≤ 1 for all 𝑥 ∈ 𝐾 and 1 ≤ 𝑡 ≤ 𝑛. Then,
for any density 𝑝 on 𝐾 ,

R̂eg𝑛 (𝑝) ≤
1
𝜂

∫
𝐾

𝑝(𝑥) log
(
𝑝(𝑥)
𝑞1 (𝑥)

)
d𝑥 + 𝜂

𝑛∑︁
𝑡=1

∫
𝐾

𝑞𝑡 (𝑥)ℓ𝑡 (𝑥)2 d𝑥 .

The first term on the right-hand side is the relative entropy between 𝑝 and 𝑞1,
which is the uniform distribution on 𝐾 . Remark 7.9 applies here as well. There is
no requirement that the losses (ℓ𝑡 ) or the constraint set 𝐾 are convex, though the
exponential weights distribution is log-concave if they are. The regret relative to
a distribution is not entirely satisfactory. Ideally you want to choose 𝑝 as a Dirac
on the minimiser of

∑𝑛
𝑡=1 ℓ𝑡 , but this does not have a density. Unsurprisingly the

idea is to choose 𝑝 to be concentrated close to a minimiser. Exactly how you do
this depends on the structure of the losses. When the losses are bounded and 𝐾
is convex and bounded, then the situation is especially clean:

Corollary 7.12 Suppose that 𝐾 is a convex body and
∑𝑛
𝑡=1 ℓ𝑡 is convex and
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𝑑 ≤ 2𝑛. Then, under the same conditions as Theorem 7.11,

R̂eg𝑛 (𝑥) =
𝑛∑︁
𝑡=1

(∫
𝐾

ℓ𝑡 (𝑦)𝑞𝑡 (𝑦) d𝑦 − ℓ𝑡 (𝑥)
)

≤ 𝑑

𝜂

[
1 + log

(
2𝑛
𝑑

)]
+ 𝜂

𝑛∑︁
𝑡=1

∫
𝐾

𝑞𝑡 (𝑦)ℓ𝑡 (𝑦)2 d𝑦 .

Exercise 7.13 ⋆ Prove Corollary 7.12 by taking 𝑝 as the uniform distribution
on (1 − 𝜀)𝑥 + 𝜀𝐾 for suitable 𝜀 ∈ [0, 1].

Computationally the continuous exponential weights distribution has some
nice properties. Most notably, if 𝐾 is convex and the cumulative loss

∑𝑡−1
𝑠=1 ℓ𝑠 is

convex, then 𝑞𝑡 is log-concave and under mild additional assumptions can be
sampled from approximately in polynomial time (Chewi, 2024).

7.5 Linear bandits

For this section we assume there is no noise and that the losses are bounded,
linear and homogeneous:

Assumption 7.14 The following hold:

(1) There is no noise: 𝜀𝑡 = 0 for all 𝑡.
(2) There exists a sequence (𝜃𝑡 )𝑛𝑡=1 ∈ R𝑑 such that 𝑓𝑡 = ⟨·, 𝜃𝑡 ⟩.
(3) The losses are bounded: ( 𝑓𝑡 ) ∈ ℱb.

Remark 7.15 Cautious readers may notice that the above assumptions do
not correspond to ℱb,lin because the representation has been chosen so that
the losses are homogeneous. In the notes we explain a simple way to reduce
the inhomogeneous setting to the homogeneous one. Note also that the global
assumption that 𝐾 is convex is not actually used in this section. Only that it is
nonempty and compact.

The plan is to use exponential weights on a finite C ⊂ 𝐾 that is sufficiently
large that the optimal action in 𝐾 can be approximated by something in C . Let
𝐴 = conv(𝐾 ∪ (−𝐾)), which is a symmetric convex body. Recall the definitions
of 𝐴◦ and ∥·∥𝐴 and ∥·∥𝐴◦ in Section 3.1. By the assumption that the losses are
bounded, for any 𝑡, 1 ≥ max𝑥,𝑦∈𝐾 | ⟨𝑥 − 𝑦, 𝜃𝑡 ⟩ | = ∥𝜃𝑡 ∥𝐴◦ and therefore

𝜃𝑡 ∈ Θ =
{
𝜃 ∈ R𝑑 : ∥𝜃∥𝐴◦ ≤ 1

}
.
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What we need from C is that for all 𝜃𝑡 (∈ Θ) and 𝑦 ∈ 𝐾 there exists an 𝑥 ∈ C

such that 𝑓𝑡 (𝑥) − 𝑓𝑡 (𝑦) is small. Precisely, we need

max
𝑦∈𝐾

min
𝑥∈C

⟨𝑥 − 𝑦, 𝜃⟩ ≤ 1
𝑛
= 𝜀 .

Suppose that ∥𝑥 − 𝑦∥𝐴 ≤ 𝜀, then by Proposition 3.1 ⟨𝑥 − 𝑦, 𝜃⟩ ≤
∥𝑥 − 𝑦∥𝐴 ∥𝜃∥𝐴◦ ≤ 𝜀. Hence, it suffices to choose C ⊂ 𝐾 such that
𝐾 ⊂ ⋃

𝑥∈C (𝑥 + 𝜀𝐴). By Proposition 7.3, such a cover exists with

|C | ≤
(
1 + 4

𝜀

)𝑑
. (7.4)

The algorithm for linear bandits plays actions in C and uses importance-
weighted least squares (in Line 8) to estimate ⟨𝑥, 𝜃𝑡 ⟩ for all 𝑥 ∈ C . The
distribution proposed by exponential weights is mixed with a small amount
of an optimal design on C , which is needed so that the estimates are suitably
bounded as required by Theorem 7.8.

1 args : 𝜂 > 0 , 𝛾 ∈ (0, 1) , 𝐾

2 f i n d C ⊂ 𝐾 such t h a t max
𝑦∈𝐾

min
𝑥∈C

∥𝑥 − 𝑦∥𝐴 ≤ 1
𝑛

3 f i n d o p t i m a l d e s i g n 𝜋 on C (see Theorem 7.6)
4 f o r 𝑡 = 1 to 𝑛

5 l e t 𝑞𝑡 (𝑥) =
exp(−𝜂∑𝑡−1

𝑢=1 ⟨𝑥, 𝜃𝑢 ⟩)∑
𝑦∈C exp(−𝜂∑𝑡−1

𝑢=1 ⟨𝑦, 𝜃𝑢 ⟩)
6 l e t 𝑝𝑡 = (1 − 𝛾)𝑞𝑡 + 𝛾𝜋
7 sample 𝑋𝑡 from 𝑝𝑡 and o b s e r v e 𝑌𝑡 = 𝑓𝑡 (𝑋𝑡 )
8 l e t 𝐺𝑡 =

∑
𝑎∈C 𝑝𝑡 (𝑎)𝑎𝑎⊤ and 𝜃𝑡 = 𝐺

+
𝑡 𝑋𝑡𝑌𝑡

Algorithm 7.1: Exponential weights for linear bandits

As mentioned, Algorithm 7.1 does not need 𝐾 to be a convex body. And
indeed, in many applications 𝐾 is a finite set (see Note 7.vi). When 𝐾 is a
convex body, you can use continuous exponential weights (Section 7.4) instead
of the discretisation.

Exercise 7.16 ⋆ Replace the discrete exponential weights in Algorithm 7.1
with continuous exponential weights from Section 7.4 and adapt the proof of
Theorem 7.17 below to prove that for 𝑛 ≥ 2𝑑 the regret of this algorithm is
upper bounded by

E[Reg𝑛] = 𝑂
(
𝑑
√︁
𝑛 log(𝑛/𝑑)

)
.
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Theorem 7.17 Suppose that

𝜂 =

√︂
log |C |

2𝑛𝑑
and 𝛾 = 𝜂𝑑 .

Under Assumption 7.14, the regret of Algorithm 7.1 is bounded by

E[Reg𝑛] ≤ 1 +
√︁

8𝑛𝑑 log |C | .

Note that by (7.4), C can be chosen so that log |C | ≤ 𝑑 log(1 + 4𝑛) and in
this case one has E[Reg𝑛] = 𝑂 (𝑑

√︁
𝑛 log(𝑛)).

Proof The algorithm is only well-defined if 𝛾 ∈ [0, 1]. Suppose that 𝛾 ≥ 1,
then

1 ≤ 𝜂𝑑 =

√︂
𝑑 log |C |

2𝑛
.

Then, no matter how the actions are chosen, boundedness of the losses implies
that Reg𝑛 ≤ 𝑛 ≤

√︁
𝑛𝑑 log( |C |)/2. Suppose for the remainder that 𝛾 ∈ (0, 1).

Recall the definition of 𝐺 𝜋 from Section 7.2 and let

𝐺𝑞𝑡 =
∑︁
𝑥∈C

𝑞𝑡 (𝑥)𝑥𝑥⊤ .

With this notation, 𝐺𝑡 = (1 − 𝛾)𝐺𝑞𝑡 + 𝛾𝐺 𝜋 . Of course 𝐺𝑡 ⪰ (1 − 𝛾)𝐺𝑞𝑡
and 𝐺𝑡 ⪰ 𝛾𝐺 𝜋 . Since 𝑞𝑡 is strictly positive, ker(𝐺𝑞𝑡 ) = span(C )⊥ and by
assumption ker(𝐺 𝜋) = span(C )⊥. Hence, by Fact 7,

𝐺+
𝑡 ⪯ 1

1 − 𝛾𝐺
+
𝑞𝑡

and 𝐺+
𝑡 ⪯ 1

𝛾
𝐺+
𝜋 . (7.5)

Next, for any 𝑦 ∈ C ,

〈
𝑦,E𝑡−1 [𝜃𝑡 ]

〉
=

〈
𝑦,

∑︁
𝑥∈C

𝑝𝑡 (𝑥)𝐺+
𝑡 𝑥 ⟨𝑥, 𝜃𝑡 ⟩

〉
=

〈
𝑦, 𝐺+

𝑡 𝐺𝑡𝜃𝑡
〉
= ⟨𝑦, 𝜃𝑡 ⟩ , (7.6)

where in the final inequality we the assumption that 𝐺 𝜋 is an optimal design for
C (see Theorem 7.6) so that C ⊂ im(𝐺⊤

𝜋) ⊂ im(𝐺⊤
𝑡 ) and Fact 6. Furthermore,

E𝑡−1
[
⟨𝑥, 𝜃𝑡 ⟩2] = E𝑡−1

[
𝑌2
𝑡 𝑥

⊤𝐺+
𝑡 𝑋𝑡𝑋

⊤
𝑡 𝐺

+
𝑡 𝑥

]
≤ ∥𝑥∥2

𝐺+
𝑡 𝐺𝑡𝐺

+
𝑡
= ∥𝑥∥2

𝐺+
𝑡
, (7.7)
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where we used the fact that 𝑌2
𝑡 ≤ 1. Therefore,

E𝑡−1

[∑︁
𝑥∈C

𝑞𝑡 (𝑥)⟨𝑥, 𝜃𝑡 ⟩2

]
≤

∑︁
𝑥∈C

𝑞𝑡 (𝑥) ∥𝑥∥2
𝐺+
𝑡

by (7.7)

≤ 1
1 − 𝛾

∑︁
𝑥∈C

𝑞𝑡 (𝑥) ∥𝑥∥2
𝐺+
𝑞𝑡

by (7.5)

=
1

1 − 𝛾 tr(𝐺𝑞𝑡𝐺
+
𝑞𝑡
)

≤ 𝑑

1 − 𝛾 . by Fact 8

In order to apply Theorem 7.8 the loss estimates need to be suitably bounded.
This is where the exploration using experimental design comes into play. For
any 𝑥 ∈ C ,

𝜂 |⟨𝑥, 𝜃𝑡 ⟩| = 𝜂
��𝑥⊤𝐺+

𝑡 𝑋𝑡𝑌𝑡
�� ≤ 𝜂∥𝑥∥𝐺+

𝑡
∥𝑋𝑡 ∥𝐺+

𝑡
≤ 𝜂𝑑

𝛾
= 1 ,

where we used (7.5) and the fact that 𝜋 is an optimal design on C so that by
Theorem 7.5, for any 𝑥 ∈ C , ∥𝑥∥𝐺+

𝜋
≤
√
𝑑. Define 𝑥★ = arg min𝑥∈C

∑𝑛
𝑡=1 ⟨𝑥, 𝜃𝑡 ⟩.

Then, the regret is bounded by

E[Reg𝑛] = max
𝑥∈𝐾

E

[
𝑛∑︁
𝑡=1

⟨𝑋𝑡 − 𝑥, 𝜃𝑡 ⟩
]

= max
𝑥∈𝐾

𝑛∑︁
𝑡=1

⟨𝑥★ − 𝑥, 𝜃𝑡 ⟩ + E

[
𝑛∑︁
𝑡=1

⟨𝑋𝑡 − 𝑥★, 𝜃𝑡 ⟩
]
. (7.8)

The first term in (7.8) is bounded by

max
𝑥∈𝐾

𝑛∑︁
𝑡=1

⟨𝑥★ − 𝑥, 𝜃𝑡 ⟩ = max
𝑥∈𝐾

min
𝑦∈C

𝑛∑︁
𝑡=1

⟨𝑦 − 𝑥, 𝜃𝑡 ⟩

≤ max
𝑥∈𝐾

min
𝑦∈C

𝑛∑︁
𝑡=1

∥𝑦 − 𝑥∥𝐴 ∥𝜃𝑡 ∥𝐴◦

≤ max
𝑥∈𝐾

min
𝑦∈C

𝑛 ∥𝑦 − 𝑥∥𝐴

≤ 1 ,

where we used Cauchy-Schwarz, the fact that 𝜃𝑡 ∈ Θ = {𝜃 : ∥𝜃∥𝐴◦ ≤ 1} and the
definition of the cover C . The second term in (7.8) is bounded using Theorem 7.8
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by

E

[
𝑛∑︁
𝑡=1

⟨𝑋𝑡 − 𝑥★, 𝜃𝑡 ⟩
]
= E

[
𝑛∑︁
𝑡=1

∑︁
𝑥∈C

𝑝𝑡 (𝑥)⟨𝑥 − 𝑥★, 𝜃𝑡 ⟩
]

≤ 𝑛𝛾 + (1 − 𝛾)E
[
𝑛∑︁
𝑡=1

∑︁
𝑥∈C

𝑞𝑡 (𝑥)⟨𝑥 − 𝑥★, 𝜃𝑡 ⟩
]

= 𝑛𝛾 + (1 − 𝛾)E
[
𝑛∑︁
𝑡=1

∑︁
𝑥∈C

𝑞𝑡 (𝑥)
〈
𝑥 − 𝑥★, 𝜃𝑡

〉]
(7.6)

≤ 𝑛𝛾 + (1 − 𝛾)
(

log |C |
𝜂

+ E

[
𝑛∑︁
𝑡=1

∑︁
𝑥∈C

𝑞𝑡 (𝑥)⟨𝑥, 𝜃𝑡 ⟩2

])
Theorem 7.8

≤ 𝑛𝛾 + log |C |
𝜂

+ 𝜂𝑛𝑑 , (by Fact 8)

where in the first inequality we used the fact that 𝑝𝑡 = (1 − 𝛾)𝑞𝑡 + 𝛾𝜋 and the
assumption that ( 𝑓𝑡 ) are bounded so that∑︁

𝑥∈C

𝜋(𝑥) ⟨𝑥 − 𝑥★, 𝜃𝑡 ⟩ =
∑︁
𝑥∈C

𝜋(𝑥) ( 𝑓𝑡 (𝑥) − 𝑓𝑡 (𝑥★)) ≤ 1 .

The result follows by substituting the constants. □

7.6 Quadratic bandits

Quadratic bandits seem much harder than linear bandits.But if you ignore
the computation complexity then it turns out that quadratic bandits are linear
bandits.

Assumption 7.18 There is no noise and the loss functions are quadratic and
bounded: ( 𝑓𝑡 ) ∈ ℱb,quad.

Quadratic bandits can be viewed as linear bandits by introducing a kernel
feature map. Let 𝑑2 = 𝑑2+3𝑑+2

2 and define a function 𝜙(𝑥) : R𝑑 → R𝑑2 by

𝜙(𝑥) = (1, 𝑥1, . . . , 𝑥𝑑 , 𝑥
2
1, 𝑥1𝑥2, . . . , 𝑥1𝑥𝑑 , 𝑥

2
2, 𝑥2𝑥3, . . . , 𝑥

2
𝑑−1, 𝑥𝑑−1𝑥𝑑 , 𝑥

2
𝑑) .

So 𝜙 is the feature map associated with the polynomial kernel of degree 2. You
should check that any 𝑓 ∈ ℱb,quad can be written as 𝑓 (𝑥) = ⟨𝜙(𝑥), 𝜃⟩ for some
𝜃 ∈ R𝑑2 .

Lemma 7.19 Let 𝐾 ⊂ R𝑑 be a convex body. There exists a cover C ⊂ 𝐾 such
that
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(1) max𝑥∈𝐾 min𝑦∈C | 𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝜀 for all 𝑓 ∈ ℱb,quad

(2) |C | ≤
(
1 + 24𝑑3.5

𝜀

)𝑑
.

Proof We provide the proof when B𝑑1 ⊂ 𝐾 ⊂ 𝑑B𝑑1 and leave the general case
as an exercise. Let C be a cover of 𝐾 such

max
𝑥∈𝐾

min
𝑦∈C

∥𝑥 − 𝑦∥ ≤ 𝜀

6𝑑2.5 .

By Proposition 7.4, C can be chosen so that

|C | ≤
(
1 + 24𝑑3.5

𝜀

)𝑑
.

Let 𝑓 ∈ ℱb,quad and let 𝜃 be such that 𝑓 (𝑥) = ⟨𝜙(𝑥), 𝜃⟩. Then, since B𝑑1 ⊂ 𝐾

by assumption,

1 ≥ max
𝑥∈𝐾

| 𝑓 (𝑥) | ≥ max
𝑥∈B𝑑1

| 𝑓 (𝑥) | ≥ 1
2
∥𝜃∥∞ ,

where the last inequality is left as an exercise:

Exercise 7.20 ⋆ Show that max𝑥∈B𝑑1 | 𝑓 (𝑥) | ≥ 1
2 ∥𝜃∥∞.

Let 𝑥 ∈ 𝐾 be arbitrary and 𝑦 ∈ C be such that ∥𝑥 − 𝑦∥ ≤ 𝜀

6𝑑2.5 . Then,

| 𝑓 (𝑥) − 𝑓 (𝑦) | = |⟨𝜙(𝑥) − 𝜙(𝑦), 𝜃⟩| ≤ 2∥𝜙(𝑥) − 𝜙(𝑦)∥1 ≤ 6𝑑2.5 ∥𝑥 − 𝑦∥ ≤ 𝜀 .

where the first inequality follows from Cauchy-Schwarz and the fact that
∥𝜃∥∞ ≤ 4 by Exercise 7.20. The second follows because 𝑥 ∈ B𝑑

𝑑
and using

Exercise 7.21 below. □

Exercise 7.21 ⋆ Suppose that 𝑥, 𝑦 ∈ B𝑑
𝑑

. Show that

∥𝜙(𝑥) − 𝜙(𝑦)∥1 ≤ 3𝑑2.5 ∥𝑥 − 𝑦∥∞ .

Exercise 7.22 ⋆ Prove Lemma 7.19 for arbitrary convex bodies 𝐾. You
may use the fact that for any convex body 𝐾 there exists an affine map 𝑇 such
that B𝑑1 ⊂ 𝑇𝐾 ⊂ 𝑑B𝑑1 , which follows from Theorem 3.15.

We can now simply write the kernelised version of Algorithm 7.1.
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1 args : 𝜂 > 0 , 𝛾 ∈ (0, 1) and 𝐾

2 f i n d C ⊂ 𝐾 s a t i s f y i n g conds . i n Lemma 7.19 , 𝜀 = 1
𝑛

3 f i n d o p t i m a l d e s i g n 𝜋 on {𝜙(𝑎) : 𝑎 ∈ C }
4 f o r 𝑡 = 1 to 𝑛

5 l e t 𝑞𝑡 (𝑥) =
exp(−𝜂∑𝑡−1

𝑢=1⟨𝜙 (𝑥 ) , 𝜃𝑢⟩)∑
𝑥∈C exp(−𝜂∑𝑡−1

𝑢=1⟨𝜙 (𝑥 ) , 𝜃𝑢⟩)
6 l e t 𝑝𝑡 = (1 − 𝛾)𝑞𝑡 + 𝛾𝜋
7 sample 𝑋𝑡 from 𝑝𝑡 and o b s e r v e 𝑌𝑡 = 𝑓𝑡 (𝑋𝑡 )
8 l e t 𝐺𝑡 =

∑
𝑎∈C 𝑝𝑡 (𝑎)𝜙(𝑎)𝜙(𝑎)⊤ and 𝜃𝑡 = 𝐺

+
𝑡 𝑋𝑡𝑌𝑡

Algorithm 7.2: Exponential weights for quadratic bandits

An immediate corollary of Theorem 7.17 is the following bound on the regret
of Algorithm 7.2

Theorem 7.23 Suppose that

𝜂 =

√︄
log |C |
2𝑛𝑑2

and 𝛾 = 𝑑2𝜂 .

Under Assumption 7.18 the expected regret of Algorithm 7.2 is bounded by

E[Reg𝑛] ≤ 1 +
√︁

8𝑛𝑑2 log |C | = 𝑂
(
𝑑1.5

√︁
𝑛 log(𝑛𝑑)

)
.

Note that we did not use anywhere that ℱb,quad only included convex quadrat-
ics. Everything works for more general quadratic losses. Even if we restrict our
attention to convex quadratics, none of the algorithms we have presented so far
can match this bound. Actually no efficient algorithm is known matching this
bound except for special 𝐾 .

7.7 Notes

7.i: We promised to explain how to handle inhomogeneous linear losses. The
simple solution is to let 𝜙(𝑥) = (1, 𝑥) and run the algorithm for linear bandits
on 𝜙(𝐾).

7.ii: Even when 𝐾 is convex, (non-convex) quadratic programming is
computationally hard. For example, when 𝐾 is a simplex and 𝐴 is the adjacency
matrix of an undirected graph 𝐺, then a theorem by Motzkin and Straus (1965)
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says that

1
2

min
𝑥∈Δ𝑑

(−𝑥⊤𝐴𝑥) = 1
2

(
1

𝜔(𝐺) − 1
)
,

where 𝜔(𝐺) is the size of the largest clique in 𝐺. Since the clique decision
problem is NP-complete (Karp, 1972), there (probably) does not exist an efficient
algorithm for minimising non-convex quadratic functions over the simplex.

7.iii: By the previous note, Algorithm 7.2 cannot be implemented efficiently,
since its analysis did not make use of convexity of the losses. Sadly, even if
we restrict our attention to convex quadratic loss functions and convex 𝐾, the
kernel method does not seem amenable to efficient calculations. Why not? The
problem is that if 𝐾 is a convex body, then the set 𝐽 = {𝜙(𝑎) : 𝑎 ∈ 𝐾} is not
convex.

7.iv: Algorithm 7.1 is by Bubeck et al. (2012) and Algorithm 7.2 is essentially
due to Chatterji et al. (2019). Note that the latter consider kernelised bandits
more generally. You could replace the quadratic kernel with a higher-degree
polynomial (or even infinite-dimensional feature map) and obtain regret bounds
for a larger class of losses.

7.v: Note that ℱb,lin = ℱb,sm when 𝛽 = 0. This means that Theorem 6.14
shows that Algorithm 6.2 has regretE[Reg𝑛] ≤ 1+3𝑑

√︁
𝜗𝑛 log(𝑛). The algorithm

is efficient when the learner has access to a 𝜗-self-concordant barrier. This
special case was analysed in the first application of self-concordance to bandits
by Abernethy et al. (2008).

7.vi: Continuous exponential weights is generally preferable computationally
when the losses and constraint set are convex, at least when the dimension is not
tiny. In many applications of linear bandits 𝐾 is a moderately sized finite set. For
example, 𝐾 might be a set of features associated with books to be recommended.
In these cases Algorithm 7.1 is a good choice with |C | = 𝐾. We will see an
example of exponential weights for convex bandits in the next chapter and with
𝑑 = 1 where either the continuous or discrete versions of exponential weights
could be employed, with the latter moderately more computationally efficient.

7.vii: For some time it was open whether or not 𝑑
√︁
𝑛 polylog(𝑛, 𝑑) regret

is possible for linear bandits with a computationally efficient algorithm when
𝐾 is a convex body represented by a membership or separation oracle. This
was resolved by Hazan et al. (2016), who used continuous exponential weights
but replaced the Kiefer–Wolfowitz distribution with a spanner that can be
computed efficiently. The only reason not to include that algorithm here is that
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we are primarily focussed on convex bandits and because the analysis is more
sophisticated.



8
Exponential weights

We already saw an application of exponential weights to linear and quadratic
bandits in Chapter 7. The same abstract algorithm can also be used for convex
bandits but the situation is more complicated. Throughout this chapter we
assume the losses are bounded and there is no noise:

Assumption 8.1 The following hold:

(1) The losses are in ℱb.
(2) There is no noise so that 𝑌𝑡 = 𝑓𝑡 (𝑋𝑡 ).

Two main topics will be covered here:

◦ A relatively practical algorithm for adversarial bandits when 𝑑 = 1 with
𝑂 (

√
𝑛 log(𝑛)) regret.

◦ The connection via minimax duality between mirror descent and the in-
formation ratio (Russo and Van Roy, 2014) and its application to convex
bandits.

The relation between the two topics is that both make use of an abstract version
of exponential weights.

8.1 Exponential weights for convex bandits

The version of exponential weights introduced in Chapter 7 is designed for a
finite action set. Like that chapter, we will apply this algorithm to a discretisation
of 𝐾 , which is given in an abstract form in Algorithm 8.1 below.

91
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1 args : l e a r n i n g r a t e 𝜂 > 0
2 l e t C ⊂ 𝐾 be f i n i t e
3 f o r 𝑡 = 1 to 𝑛

4 compute 𝑞𝑡 (𝑥) =
exp(−𝜂∑𝑡−1

𝑢=1 𝑠𝑢 (𝑥 ))∑
𝑦∈C exp(−𝜂∑𝑡−1

𝑢=1 𝑠𝑢 (𝑦))
f o r a l l 𝑥 ∈ C

5 f i n d d i s t r i b u t i o n 𝑝𝑡 as a f u n c t i o n o f 𝑞𝑡

6 sample 𝑋𝑡 from 𝑝𝑡 and o b s e r v e 𝑌𝑡 = 𝑓𝑡 (𝑋𝑡 )
7 compute 𝑠𝑡 (𝑥) ∀𝑥 ∈ C u s i n g 𝑝𝑡 , 𝑞𝑡 , 𝑋𝑡 and 𝑌𝑡

Algorithm 8.1: Exponential weights for bandits

As with gradient descent, to make this concrete we need a sampling distribution
𝑝𝑡 and mechanism for estimating the loss function. The extra complication here
is that while for gradient descent we only needed to estimate a gradient, here
the algorithm needs to estimate an entire function from a single observation.
From a computational perspective there is a serious problem that C will need to
be exponentially large in 𝑑. A potential way to mitigate this is to use continuous
exponential weights (Section 7.4), which was the approach taken by Bubeck
et al. (2017) and (non-obviously) by the algorithm in Chapter 10. The reason
we avoid this here is twofold:

◦ For the 1-dimensional algorithm it turns out that the discrete version is more
computationally efficient and simpler.

◦ The minimax duality arguments are already computationally inefficient and
using continuous exponential weights only serves to introduce measure-
theoretic challenges.

8.2 Exponential weights in one dimension

For this section assume that 𝑑 = 1 and 𝐾 = [−1, 1] is the interval and let
𝜀 = 1/

√
𝑛 and

C = {𝑘𝜀 : 𝑘 ∈ Z, 𝑘𝜀 ∈ 𝐾} .

Let 𝑥★ = arg min𝑥∈C

∑𝑛
𝑡=1 𝑓𝑡 (𝑥). The plan is to apply Theorem 7.8 to Al-

gorithm 8.1 by carefully choosing the exploration distributions (𝑝𝑡 ) and a
mechanism for constructing the estimated surrogate losses (𝑠𝑡 ). Provided the
estimated surrogates are non-negative and letting 𝑠𝑡 (𝑥) = E𝑡−1 [𝑠𝑡 (𝑥)], then
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Theorem 7.8 shows that

E

[
𝑛∑︁
𝑡=1

(∑︁
𝑥∈C

𝑞𝑡 (𝑥)𝑠𝑡 (𝑥) − 𝑠𝑡 (𝑥★)
)]

= E

[
𝑛∑︁
𝑡=1

(∑︁
𝑥∈C

𝑞𝑡 (𝑥)𝑠𝑡 (𝑥) − 𝑠𝑡 (𝑥★)
)]

≤ log |C |
𝜂

+ 𝜂

2
E

[
𝑛∑︁
𝑡=1

∑︁
𝑥∈C

𝑞𝑡 (𝑥)𝑠𝑡 (𝑥)2

]
. (8.1)

Algorithm 8.1 samples 𝑋𝑡 from distribution 𝑝𝑡 , which means the expected regret
relative to 𝑥★ is

E[Reg𝑛 (𝑥★)] =
𝑛∑︁
𝑡=1

E

[∑︁
𝑥∈C

𝑝𝑡 (𝑥) 𝑓𝑡 (𝑥) − 𝑓𝑡 (𝑥★)
]
. (8.2)

The question is how to choose loss estimates 𝑠𝑡 and exploration distribution 𝑝𝑡
so that (8.2) can be connected to the left-hand side of (8.1) and at the same time
the right-hand side of (8.1) is well controlled.

Kernel-based estimation Let us focus on a single round 𝑡. Let 𝑓 : 𝐾 → [0, 1]
be convex and 𝑞 ∈ Δ(C ) and assume that 𝑞(𝑥) > 0 for all 𝑥 ∈ C . The learner
samples 𝑋 from 𝑝 ∈ Δ(C ) and observes 𝑌 = 𝑓 (𝑋) and uses 𝑝, 𝑞, 𝑋 and 𝑌 to
construct a surrogate estimate 𝑠 : C → R with expectation 𝑠(𝑥) = E[𝑠(𝑥)].
Staring at (8.1) and (8.2) we will be in business if we choose 𝑝 and 𝑠 in such a
way that all of the following hold:

(1) There exist (preferably) small constants 𝐴, 𝐵 > 0 such that∑︁
𝑥∈C

𝑝(𝑥) 𝑓 (𝑥) − 𝑓 (𝑥★) ≤ 𝐴

[∑︁
𝑥∈C

𝑞(𝑥)𝑠(𝑥) − 𝑠(𝑥★)
]
+ 𝐵 . (8.3)

(2) E
[∑

𝑥∈C 𝑞(𝑥)𝑠(𝑥)2] = 𝑂̃ (1).
(3) 𝑠(𝑥) ≥ 0 for all 𝑥 ∈ C .

Remark 8.2 The requirement that 𝑠 is non-negative can be relaxed to 𝜂 |𝑠(𝑥) | ≤
1 for all 𝑥 where 𝜂 = 𝑂 (1/

√
𝑛) is the learning rate. See Remark 7.10.

Because 𝑥★ is not known, the most obvious idea is to show that (8.3) holds for
all points in C , not just 𝑥★. An elegant way to construct a surrogate satisfying
these properties is by using a kernel. Let 𝑇 : C × C → R be a function with
𝑥 ↦→ 𝑇 (𝑥 |𝑦) a probability distribution for all 𝑦 and define

𝑝(𝑥) = (𝑇𝑞) (𝑥) ≜
∑︁
𝑦∈C

𝑇 (𝑥 |𝑦)𝑞(𝑦) and

𝑠(𝑦) = (𝑇∗ 𝑓 ) (𝑦) ≜
∑︁
𝑥∈C

𝑇 (𝑥 |𝑦) 𝑓 (𝑥) .
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It may be helpful to think of 𝑇 as a |C | × |C | matrix and 𝑇∗ as its transpose
(or being fancy – its adjoint). Viewing 𝑝, 𝑞, 𝑓 , 𝑠 as a vectors in R |C | we have
𝑝 = 𝑇𝑞 and 𝑠 = 𝑇∗ 𝑓 . Because the map 𝑥 ↦→ 𝑇 (𝑥 |𝑦) is a probability distribution,
the surrogate 𝑠 is some kind of smoothing of 𝑓 . And in fact the surrogates used
in earlier chapters also have this form, though in continuous spaces. Notice that∑︁

𝑦∈C

𝑠(𝑦)𝑞(𝑦) =
∑︁
𝑦∈C

(∑︁
𝑥∈𝐾

𝑇 (𝑥 |𝑦) 𝑓 (𝑥)
)
𝑞(𝑦)

=
∑︁
𝑥∈C

𝑓 (𝑥)
(∑︁
𝑦∈𝐾

𝑇 (𝑥 |𝑦)𝑞(𝑦)
)

=
∑︁
𝑥∈C

𝑓 (𝑥)𝑝(𝑥) . (8.4)

This is the motivation for choosing 𝑝 = 𝑇𝑞. Equivalently, using linear algebra
notation: ⟨𝑞, 𝑠⟩ = ⟨𝑞, 𝑇∗ 𝑓 ⟩ = ⟨𝑇𝑞, 𝑓 ⟩ = ⟨𝑝, 𝑓 ⟩. Given a kernel 𝑇 we now have
a surrogate 𝑠 = 𝑇∗ 𝑓 . Next we need a way to estimate this surrogate when the
learner samples 𝑋 from 𝑝 and observes 𝑌 = 𝑓 (𝑋). Note that 𝑝(𝑥) = 0 implies
that 𝑇 (𝑥 |𝑦) = 0 for all 𝑦, since 𝑞(𝑦) > 0 for all 𝑦 by assumption. Then,

𝑠(𝑦) =
∑︁
𝑥∈C

𝑇 (𝑥 |𝑦) 𝑓 (𝑥) =
∑︁

𝑥∈C :𝑝 (𝑥 )>0

𝑇 (𝑥 |𝑦)
𝑝(𝑥) 𝑓 (𝑥)𝑝(𝑥) ,

which shows that when 𝑋 is sampled from 𝑝 and 𝑌 = 𝑓 (𝑋), then the surrogate
𝑠 can be be estimated by

𝑠(𝑦) = 𝑇 (𝑋 |𝑦)𝑌
𝑝(𝑋) .

An important point is that we are allowed to choose𝑇 to depend on the exponential
weights distribution 𝑞. Given 𝑥 ∈ C , let ΠC (𝑥) = arg min𝑦∈C , |𝑦 | ≤ |𝑥 | |𝑥 − 𝑦 |,
which is the 𝑦 ∈ C closest to 𝑥 in the direction of the origin. We also let
𝜇 =

∑
𝑦∈C 𝑞(𝑦)𝑦 and 𝜇𝜋 = ΠC (𝜇). Given 𝑥, 𝑦 ∈ C , let 𝐼 (𝑥, 𝑦) = {𝑧 ∈ C :

min(𝑥, 𝑦) ≤ 𝑧 ≤ max(𝑥, 𝑦)} and

𝑇 (𝑥 |𝑦) = 1(𝑥 ∈ 𝐼 (𝑦, 𝜇𝜋))
|𝐼 (𝑦, 𝜇𝜋) |

. (8.5)

That is, 𝑥 ↦→ 𝑇 (𝑥 |𝑦) is the uniform distribution on 𝐼 (𝑦, 𝜇𝜋) ⊂ C . What this
means is that the distribution 𝑝 is obtained from 𝑞 by spreading the mass 𝑞
assigns to any point 𝑦 uniformly between 𝑦 and the projected mean 𝜇𝜋 . The
actions of this kernel are illustrated in Figure 8.1. We can think about why this
kernel might be useful.

◦ By (8.4), ⟨𝑞, 𝑠⟩ = ⟨𝑝, 𝑓 ⟩ no matter how the kernel is chosen. If we could
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Figure 8.1: The kernel in (8.5) acting on a loss 𝑠 = 𝑇★ 𝑓 and distribution 𝑝 = 𝑇𝑞.
Notice that 𝑞 is not particularly smooth while 𝑝 is unimodal. The surrogate
𝑠 is neither optimistic nor pessimistic, in contrast with the surrogates used in
Chapters 5 and 6, which are pessimistic/optimistic respectively.

have 𝑠(𝑥★) = 𝑓 (𝑥★), then (8.3) would hold with 𝐴 = 1 and 𝐵 = 0. You can
actually achieve this by choosing 𝑇 (𝑥 |𝑦) = 1(𝑥 = 𝑦). But with this choice
the surrogate estimate 𝑠 generally has an enormous second moment, which
is reduced by smoothing more broadly.

◦ The reason for smoothing towards the mean is that this automatically respects
the concentration properties of 𝑞. That is, if 𝑞 is concentrated about its mean
then the loss is also smoothed over a small region about the mean.

The following lemma establishes the two essential properties of the kernel,
which is that (8.3) holds with 𝐴 = 2 and 𝐵 = 𝜀

2 (part (1)) and that the second
moment of the surrogate loss is well-controlled (part (2)).

Lemma 8.3 Let 𝑇 be defined as in (8.5) and 𝑞 ∈ Δ(C ) be such that 𝑞(𝑥) > 0
for all 𝑥 ∈ C and 𝑝 = 𝑇𝑞 and 𝑠 = 𝑇★ 𝑓 . Then,

(1)
∑
𝑥∈C 𝑝(𝑥) 𝑓 (𝑥) − 𝑓 (𝑦) ≤ 2 (∑𝑥∈C 𝑞(𝑥)𝑠(𝑥) − 𝑠(𝑦)) + 𝜀

2 for all 𝑦 ∈ C .

(2)
∑
𝑥∈C

∑
𝑦∈C 𝑝(𝑥)𝑞(𝑦)

(
𝑇 (𝑥 |𝑦) 𝑓 (𝑥 )

𝑝 (𝑥 )

)2
≤ 2 + log(𝑛).
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Proof By definition,

𝑠(𝑦) = (𝑇∗ 𝑓 ) (𝑦)

=
∑︁
𝑥∈C

𝑇 (𝑥 |𝑦) 𝑓 (𝑥)

=
∑︁
𝑥∈C

1(𝑥 ∈ 𝐼 (𝑦, 𝜇𝜋))
|𝐼 (𝑦, 𝜇𝜋) |

𝑓 (𝑥)

=
∑︁
𝑥∈C

1(𝑥 ∈ 𝐼 (𝑦, 𝜇𝜋))
|𝐼 (𝑦, 𝜇𝜋) |

𝑓

(���� 𝑥 − 𝜇𝜋𝑦 − 𝜇𝜋

���� 𝑦 + ���� 𝑦 − 𝑥𝑦 − 𝜇𝜋

���� 𝜇𝜋 )
≤

∑︁
𝑥∈C

1(𝑥 ∈ 𝐼 (𝑦, 𝜇𝜋))
|𝐼 (𝑦, 𝜇𝜋) |

[���� 𝑥 − 𝜇𝜋𝑦 − 𝜇𝜋

���� 𝑓 (𝑦) + ���� 𝑦 − 𝑥𝑦 − 𝜇𝜋

���� 𝑓 (𝜇𝜋)] ( 𝑓 convex)

=
1
2
𝑓 (𝑦) + 1

2
𝑓 (𝜇𝜋) . (8.6)

The mean of 𝑥 ↦→ 𝑇 (𝑥 |𝑦) is 𝑦/2 + 𝜇𝜋/2 and therefore∑︁
𝑥∈C

𝑝(𝑥)𝑥 =
∑︁
𝑦∈C

𝑞(𝑦)
∑︁
𝑥∈C

𝑥𝑇 (𝑥 |𝑦) = 𝜇𝜋

2
+ 1

2

∑︁
𝑦∈C

𝑞(𝑦)𝑦 = 𝜇𝜋 + 𝜇
2

. (8.7)

Because 𝑓 is convex and bounded in [0, 1],

𝑓 (𝜇𝜋) ≤ 𝑓

( 𝜇𝜋 + 𝜇
2

)
+ 𝜀

2
(8.7)

= 𝑓

(∑︁
𝑥∈C

𝑝(𝑥)𝑥
)
+ 𝜀

2
𝑓 cvx

≤
∑︁
𝑥∈C

𝑝(𝑥) 𝑓 (𝑥) + 𝜀

2
,

Combining the above display with (8.6) yields

𝑠(𝑦) ≤ 1
2
𝑓 (𝑦) + 1

2

∑︁
𝑥∈C

𝑝(𝑥) 𝑓 (𝑥) + 𝜀

4
.

Lastly, by (8.4),
∑
𝑥∈C 𝑝(𝑥) 𝑓 (𝑥) = ∑

𝑥∈C 𝑞(𝑥)𝑠(𝑥) and hence∑︁
𝑥∈C

𝑝(𝑥) 𝑓 (𝑥) − 𝑓 (𝑦) ≤ 2

(∑︁
𝑥∈C

𝑞(𝑥)𝑠(𝑥) − 𝑠(𝑦)
)
+ 𝜀

2
.

This establishes (1). Part (2) follows because∑︁
𝑥∈C

∑︁
𝑦∈C

𝑞(𝑦)𝑇 (𝑥 |𝑦)2 𝑓 (𝑥)2

𝑝(𝑥) ≤
∑︁
𝑥∈C

∑︁
𝑦∈C

1(𝑥 ∈ 𝐼 (𝑦, 𝜇𝜋))
|𝐼 (𝑦, 𝜇𝜋) |

𝑞(𝑦)𝑇 (𝑥 |𝑦)
𝑝(𝑥)

≤
∑︁
𝑥∈C

1
|𝐼 (𝑥, 𝜇𝜋) |

∑︁
𝑦∈C

𝑞(𝑦)𝑇 (𝑥 |𝑦)
𝑝(𝑥)

=
∑︁
𝑥∈C

1
|𝐼 (𝑥, 𝜇𝜋) |

≤ 2 + log(𝑛) ,
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where in the first inequality we used the fact that |𝐼 (𝑦, 𝜇𝜋) | ≥ |𝐼 (𝑥, 𝜇𝜋) | for
𝑥 ∈ 𝐼 (𝑦, 𝜇𝜋). The second inequality follows via a standard harmonic sum
comparison. □

We are now in a position to use exponential weights for convex bandits using
the kernel-based surrogate loss estimators analysed above. A snapshot of the
loss estimators and exponential weights distribution is given in Figure 8.2.

1 args : l e a r n i n g r a t e 𝜂 > 0 , 𝜀 = 1/
√
𝑛

2 l e t C = {𝜀𝑘 : 𝑘 ∈ Z, 𝑘𝜀 ∈ 𝐾}
3 f o r 𝑡 = 1 to 𝑛

4 compute 𝑞𝑡 (𝑥) =
exp(−𝜂∑𝑡−1

𝑢=1 𝑠𝑢 (𝑥 ))∑
𝑦∈C exp(−𝜂∑𝑡−1

𝑢=1 𝑠𝑢 (𝑦))
∀𝑥 ∈ C

5 l e t 𝜇𝑡 = ΠC (∑𝑥∈C 𝑥𝑞𝑡 (𝑥)) and
6 𝑇𝑡 (𝑥 |𝑦) = 1(𝑥∈𝐼 (𝑦,𝜇𝑡 ) )

|𝐼 (𝑦,𝜇𝑡 ) | ∀𝑥, 𝑦 ∈ C

7 sample 𝑋𝑡 ∼ 𝑝𝑡 = 𝑇𝑡𝑞𝑡 and o b s e r v e 𝑌𝑡 = 𝑓𝑡 (𝑋𝑡 )
8 compute 𝑠𝑡 (𝑦) = 𝑇𝑡 (𝑋𝑡 |𝑦)𝑌𝑡

𝑝𝑡 (𝑋𝑡 ) ∀𝑦 ∈ C

Algorithm 8.2: Exponential weights for convex bandits: 𝑑 = 1

Computation Algorithm 8.2 is not written in the most efficient way. Naively
computing 𝑇𝑡 on all inputs would require |C |2 = Θ(𝑛) time. This can be
improved. Given 𝜇𝑡 the kernel function 𝑇𝑡 (𝑥 |𝑦) can be computed in𝑂 (1) for any
𝑥, 𝑦 ∈ C . Now 𝑋𝑡 can be sampled by first sampling 𝑍𝑡 from 𝑞𝑡 and then 𝑋𝑡 from
𝑇𝑡 (·|𝑍𝑡 ). Hence only 𝑇𝑡 (·|𝑍𝑡 ) and 𝑇𝑡 (𝑋𝑡 |·) need to be computed for all inputs.
This way the computation per round of Algorithm 8.2 is linear in |C | = Θ(

√
𝑛).

Therefore in the worst case the running time over the entire interaction is at
most 𝑂 (𝑛3/2). This is worse than the gradient-based algorithms in Chapters 5
and 6 but the regret is smaller.

Theorem 8.4 Suppose that 𝜂 = 𝑛−1/2. Under Assumption 8.1 and with 𝑑 = 1
the regret of Algorithm 8.2 is upper bounded by

E[Reg𝑛] ≤ 2
√
𝑛 log(𝑛) + 7

√
𝑛 .

Proof Let 𝑥★ = arg min𝑥∈C

∑𝑛
𝑡=1 𝑓𝑡 (𝑥). By the definition of C and the fact

that ( 𝑓𝑡 ) ∈ ℱb and 𝜀 = 1√
𝑛

,

Reg𝑛 = sup
𝑥∈𝐾

𝑛∑︁
𝑡=1

( 𝑓𝑡 (𝑋𝑡 ) − 𝑓𝑡 (𝑥)) ≤
√
𝑛 +

𝑛∑︁
𝑡=1

( 𝑓𝑡 (𝑋𝑡 ) − 𝑓𝑡 (𝑥★)) . (8.8)
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By Theorem 7.8 and Remark 7.10,

E
[
R̂eg𝑛 (𝑥★)

]
≜ E


𝑛∑︁
𝑡=1

©­«
∑︁
𝑦∈C

𝑞𝑡 (𝑦)𝑠𝑡 (𝑦) − 𝑠𝑡 (𝑥★)
ª®¬


≤ log |C |
𝜂

+ 𝜂

2
E


𝑛∑︁
𝑡=1

∑︁
𝑦∈C

𝑞𝑡 (𝑦)𝑠𝑡 (𝑦)2


=
log |C |
𝜂

+ 𝜂

2
E


𝑛∑︁
𝑡=1

E𝑡−1


∑︁
𝑦∈C

𝑞𝑡 (𝑦)𝑇𝑡 (𝑋𝑡 , 𝑦)2 𝑓𝑡 (𝑋𝑡 )2

𝑝𝑡 (𝑋𝑡 )2


 .

The inner conditional expectation is bounded using Lemma 8.3 by

E𝑡−1


∑︁
𝑦∈C

𝑞𝑡 (𝑦)𝑇𝑡 (𝑋𝑡 , 𝑦)2 𝑓𝑡 (𝑋𝑡 )2

𝑝𝑡 (𝑋𝑡 )2

 ≤ log(𝑛) + 2 .

Therefore the regret of exponential weights relative to the estimated loss function
is bounded by

E
[
R̂eg𝑛 (𝑥★)

]
≤ log |C |

𝜂
+ 𝜂𝑛

2
[log(𝑛) + 2] .

The next step is to compare E[R̂eg𝑛 (𝑥★)] and E[Reg𝑛 (𝑥★)]. By Lemma 8.3,

E𝑡−1 [ 𝑓𝑡 (𝑋𝑡 )] − 𝑓𝑡 (𝑥★) =
∑︁
𝑥∈C

𝑝𝑡 (𝑥) 𝑓𝑡 (𝑥) − 𝑓𝑡 (𝑥★)

≤ 2

[∑︁
𝑥∈C

𝑞𝑡 (𝑥)𝑠𝑡 (𝑥) − 𝑠𝑡 (𝑥★)
]
+ 1

2
√
𝑛

= 2E𝑡−1

[∑︁
𝑥∈C

𝑞𝑡 (𝑥)𝑠𝑡 (𝑥) − 𝑠𝑡 (𝑥★)
]
+ 1

2
√
𝑛
.

Hence,

E
[
Reg𝑛 (𝑥★)

]
≤ 2E

[
R̂eg𝑛 (𝑥★)

]
+ 1

2
√
𝑛 ≤ 2 log |C |

𝜂
+ 𝜂𝑛 [log(𝑛) + 2] + 1

2
√
𝑛 .

The claim follows from the choice of 𝜂 and (8.8) and because log |C | ≤
log(1 + 2

√
𝑛) and naive simplification. □
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Figure 8.2: The plot shows the estimated losses during the execution of
Algorithm 8.2. The thin grey lines are the individual loss estimation functions
(𝑠𝑡 ) while the bar chart is the average. The individual loss estimates peak at
the point played by the algorithm and decrease away from the mean. This is
strange – the loss estimators are quasiconcave while their expectations are
convex. Mathematically this form is easy to see by studying the kernel. You
should think about why it is reasonable intuitively.

8.3 The Bregman divergence

This section and the next introduce some tools needed in Section 8.5. Specifically,
the Bregman divergence, projections for Legendre functions and the modern
view of exponential weights.

Bregman divergences are well-defined for any differentiable convex function
but have particularly nice properties for the class of Legendre convex functions,
which we now define. Our exposition here is probably too brief to really impart
the right intuition. There is a beautiful article by Bauschke and Borwein (1997)
that explains all the nuances. Let 𝑅 be a closed convex function. 𝑅 is called
essentially smooth if it is differentiable on int(dom(𝑅)) ≠ ∅ and ∥𝑅′ (𝑥𝑘)∥ → ∞
whenever (𝑥𝑘) converges to 𝜕 dom(𝑅). 𝑅 is called essentially strictly convex if
it is strictly convex on all convex 𝐶 ⊂ dom(𝜕𝑅) = {𝑥 : 𝜕𝑅(𝑥) ≠ ∅}. 𝑅 is called
Legendre if it is both essentially smooth and essentially strictly convex. Lastly,
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the Legendre transform of 𝑅 is

𝑅★(𝑢) = sup
𝑥∈R𝑑

⟨𝑢, 𝑥⟩ − 𝑅(𝑥) .

Legendre functions have well-behaved Legendre transforms. In particular, when
𝑅 is Legendre, than 𝑅′ is a bijection on suitable domains:

Proposition 8.5 (Theorem 26.5, Rockafellar 1970) Suppose that 𝑅 is Legendre
and 𝑇 = 𝑅★. Then 𝑅′ : int(dom(𝑅)) → int(dom(𝑇)) is a bijection and
(𝑅′)−1 = 𝑇 ′.

Given a convex function 𝑅 : R𝑑 → R ∪ {∞} that is differentiable on
int(dom(𝑅)), the Bregman divergence with respect to 𝑅 is D𝑅 : R𝑑 ×
int(dom(𝑅)) → R∪ {∞} defined by D𝑅 (𝑥, 𝑦) = 𝑅(𝑥) − 𝑅(𝑦) − ⟨𝑅′ (𝑦), 𝑥 − 𝑦⟩.

Proposition 8.6 (Generalised Pythagorean Theorem) Suppose that 𝑅 : R𝑑 →
R∪{∞} is Legendre and𝐶 ⊂ R𝑑 is convex and closed with𝐶∩int(dom(𝑅)) ≠ ∅.
For 𝑥 ∈ int(dom(𝑅)) the ‘projection’ Π(𝑥) = arg min𝑦∈𝐶 D𝑅 (𝑦, 𝑥) is unique
and for any 𝑧 ∈ 𝐶,

D𝑅 (𝑧, 𝑥) ≥ D𝑅 (𝑧,Π(𝑥)) + D𝑅 (Π(𝑥), 𝑥) .

Proof ( ) Let 𝑦 = Π(𝑥). Under the conditions of the theorem, 𝑦 exists, is
unique and 𝑦 ∈ int(dom(𝑅)) (Bauschke and Borwein, 1997, Theorem 3.12).
Hence 𝑅 is differentiable at 𝑦 and by the first-order optimality conditions for
Π(𝑥), ⟨𝑅′ (𝑦), 𝑧 − 𝑦⟩ − ⟨𝑅′ (𝑥), 𝑧 − 𝑦⟩ ≥ 0. Therefore,

D𝑅 (𝑧, 𝑦) + D𝑅 (𝑦, 𝑥) = 𝑅(𝑧) − 𝑅(𝑥) − ⟨𝑅′ (𝑦), 𝑧 − 𝑦⟩ − ⟨𝑅′ (𝑥), 𝑦 − 𝑥⟩
≤ 𝑅(𝑧) − 𝑅(𝑥) − ⟨𝑅′ (𝑥), 𝑧 − 𝑥⟩
= D𝑅 (𝑧, 𝑥) . □

The Bregman divergence with respect to 𝑅 is related to the Bregman diver-
gence with respect to 𝑅★ as follows:

Proposition 8.7 Suppose that 𝑅 is Legendre, then for all 𝑥, 𝑦 ∈ int(dom(𝑅)),

D𝑅 (𝑥, 𝑦) = D𝑅★ (𝑅′ (𝑦), 𝑅′ (𝑥)) .

Proof ( ) Let 𝑣 = 𝑅′ (𝑦) and 𝑢 = 𝑅′ (𝑥) and 𝑇 = 𝑅★ and convince yourself
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that 𝑇 (𝑣) = ⟨𝑣, 𝑦⟩ − 𝑅(𝑦) and 𝑇 (𝑢) = ⟨𝑢, 𝑥⟩ − 𝑅(𝑥). Then,

D𝑅 (𝑥, 𝑦) = 𝑅(𝑥) − 𝑅(𝑦) − ⟨𝑅′ (𝑦), 𝑥 − 𝑦⟩
= [⟨𝑢, 𝑥⟩ − 𝑇 (𝑢)] − [⟨𝑣, 𝑦⟩ − 𝑇 (𝑣)] − ⟨𝑣, 𝑥 − 𝑦⟩
= 𝑇 (𝑣) − 𝑇 (𝑢) − ⟨𝑥, 𝑣 − 𝑢⟩
★
= 𝑇 (𝑣) − 𝑇 (𝑢) − ⟨𝑇 ′ (𝑢), 𝑣 − 𝑢⟩
= D𝑅★ (𝑣, 𝑢)
= D𝑅★ (𝑅′ (𝑦), 𝑅′ (𝑥)) ,

where (★) follows from Proposition 8.5 and the rest by substituting the definitions.
□

8.4 Exponential weights and regularisation

In Chapter 7 we presented the old-school analysis of exponential weights. Later
in this chapter we need the modern viewpoint that exponential weights is
the same as follow-the-regularised-leader with unnormalised negative entropy
(negentropy) regularisation. Unsurprisingly, the analysis is not really different.
The modern view actually stops before the approximations made in the proof
of Theorem 7.8. Most importantly, by using the language of convex analysis
we are able to clarify the duality argument used later. The only reason not to
introduce this approach in Chapter 7 is that it is somewhat less elementary. Let
𝑅 : R𝑚 → R ∪ {∞} be the unnormalised negative entropy function defined by

𝑅(𝑝) =
{∑𝑚

𝑘=1 (𝑝𝑘 log(𝑝𝑘) − 𝑝𝑘) if 𝑝 ∈ R𝑚+
∞ otherwise ,

where we adopt the convention that 0 log(0) = 0. When 𝑝, 𝑞 ∈ Δ𝑚, then
D𝑅 (𝑝, 𝑞) =

∑𝑚
𝑘=1 𝑝𝑘 log(𝑝𝑘/𝑞𝑘) is the relative entropy between distributions

𝑝 and 𝑞. In the next exercise you will show that 𝑅 is Legendre, calculate its dual
and show that follow-the-regularised-leader with 𝑅 is equivalent to exponential
weights:

Exercise 8.8 ⋆ Suppose that 𝑥 ∈ R𝑚 and 𝑞 ∈ (0,∞)𝑚. Show that:

(1) 𝑅 is Legendre and 𝑅★(𝑥) = ∑𝑚
𝑘=1 exp(𝑥𝑘).

(2) arg min
𝑝∈Δ𝑚

D𝑅 (𝑝, 𝑞) =
𝑞

∥𝑞∥1
and arg min

𝑝∈Δ𝑚
⟨𝑝, 𝑥⟩ + 𝑅(𝑝) = exp(−𝑥)

∥exp(−𝑥)∥1
.
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Let C be a finite set and 𝑚 = |C |. We identify distributions and functions
on C by vectors in R𝑚. Concretely, for 𝑝 ∈ Δ(C ) ≡ Δ𝑚 and 𝑓 : C → R
let ⟨𝑝, 𝑓 ⟩ =

∑
𝑥∈C 𝑝(𝑥) 𝑓 (𝑥). Given a learning rate 𝜂 > 0 and a sequence of

functions (𝑠𝑡 )𝑛𝑡=1 : C → R, let

𝑞𝑡 = arg min
𝑞∈Δ𝑚

𝑡−1∑︁
𝑢=1

𝜂 ⟨𝑞, 𝑠𝑢⟩ + 𝑅(𝑞) .

By Exercise 8.8, the distribution 𝑞𝑡 can be written in its familiar form:

𝑞𝑡 (𝑥) =
exp

(
−𝜂∑𝑡−1

𝑢=1 𝑠𝑢 (𝑥)
)

∑
𝑦∈C exp

(
−𝜂∑𝑡−1

𝑢=1 𝑠𝑢 (𝑦)
) . (8.9)

The following refinement of Theorem 7.8 bounds the regret of exponential
weights relative to the loss functions (𝑠𝑡 ).

Theorem 8.9 Let (𝑠𝑡 )𝑛𝑡=1 : C → R be a sequence of functions and 𝑞𝑡 be
defined as in (8.9) and 𝜂 > 0. Then,

max
𝑞★∈Δ𝑚

𝑛∑︁
𝑡=1

⟨𝑞𝑡 − 𝑞★, 𝑠𝑡 ⟩ ≤
log𝑚
𝜂

+ 1
𝜂

𝑛∑︁
𝑡=1

𝒮𝑞𝑡 (𝜂𝑠𝑡 ) ,

where 𝒮𝑞 (𝑢) = D𝑅★ (𝑅′ (𝑞) − 𝑢, 𝑅′ (𝑞)) is called the ‘stability’ function.

Proof ( ) Let 𝑞★ ∈ Δ𝑚 and Φ𝑡 (𝑝) =
∑𝑡
𝑢=1 𝜂 ⟨𝑝, 𝑠𝑢⟩ + 𝑅(𝑝) and

𝑞𝑡+1 ≜ arg min
𝑞∈R𝑚

𝜂 ⟨𝑞, 𝑠𝑡 ⟩ + D𝑅 (𝑞, 𝑞𝑡 ) = 𝑞𝑡 exp(−𝜂𝑠𝑡 ) , (8.10)

where the second equality follows by solving the optimisation problem analyti-
cally. Note that 𝑞𝑡 ∈ Δ+

𝑚 holds by (8.9), which means that 𝑞𝑡+1 ∈ Δ+
𝑚 and by

Exercise 8.8,

𝑞𝑡+1 = arg min
𝑞∈Δ𝑚

D𝑅 (𝑞, 𝑞𝑡+1) . (8.11)
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Repeating the proof of Theorem 6.5,
𝑛∑︁
𝑡=1

⟨𝑞𝑡 − 𝑞★, 𝑠𝑡 ⟩ ≤
𝑅(𝑞★) − 𝑅(𝑞1)

𝜂
+ 1
𝜂

𝑛∑︁
𝑡=1

(Φ𝑡 (𝑞𝑡 ) −Φ𝑡 (𝑞𝑡+1))

(a)

≤ 𝑅(𝑞★) − 𝑅(𝑞1)
𝜂

+ 1
𝜂

𝑛∑︁
𝑡=1

DΦ𝑡 (𝑞𝑡 , 𝑞𝑡+1)

(b)

=
𝑅(𝑞★) − 𝑅(𝑞1)

𝜂
+ 1
𝜂

𝑛∑︁
𝑡=1

D𝑅 (𝑞𝑡 , 𝑞𝑡+1)

(c)

≤ 𝑅(𝑞★) − 𝑅(𝑞1)
𝜂

+ 1
𝜂

𝑛∑︁
𝑡=1

D𝑅 (𝑞𝑡 , 𝑞𝑡+1)

(d)

=
𝑅(𝑞★) − 𝑅(𝑞1)

𝜂
+ 1
𝜂

𝑛∑︁
𝑡=1

D𝑅★ (𝑅′ (𝑞𝑡+1), 𝑅′ (𝑞𝑡 ))

(e)

=
𝑅(𝑞★) − 𝑅(𝑞1)

𝜂
+ 1
𝜂

𝑛∑︁
𝑡=1

D𝑅★ (𝑅′ (𝑞𝑡 ) − 𝜂𝑠𝑡 ), 𝑅′ (𝑞𝑡 ))

=
log(𝑚)
𝜂

+ 1
𝜂

𝑛∑︁
𝑡=1

𝒮𝑞𝑡 (𝜂𝑠𝑡 ) .

where (a) follows from the definition of the Bregman divergence and because
by the first-order optimality conditions

〈
Φ′
𝑡 (𝑞𝑡+1), 𝑞𝑡 − 𝑞𝑡+1

〉
= 0, which holds

with equality because 𝑞𝑡 , 𝑞𝑡+1 ∈ Δ+
𝑚. (b) is because DΦ𝑡 = D𝑅 by virtue of

the fact that the Bregman divergence of a linear function vanishes. (c) follows
from (8.11) and Proposition 8.6, which yields

D𝑅 (𝑞𝑡 , 𝑞𝑡+1) ≥ D𝑅 (𝑞𝑡 , 𝑞𝑡+1) + D𝑅 (𝑞𝑡+1, 𝑞𝑡+1) ≥ D𝑅 (𝑞𝑡 , 𝑞𝑡+1) .

Finally, (d) follows from Proposition 8.7 and (e) from (8.10) and because
𝑅′ (𝑞) = log(𝑞). □

Remark 8.10 To see why Theorem 8.9 refines Theorem 7.8, when 𝑠𝑡 is
nonnegative, then

𝒮𝑞𝑡 (𝜂𝑠𝑡 ) = D𝑅★ (𝑅′ (𝑞𝑡 ) − 𝜂𝑠𝑡 , 𝑅′ (𝑞𝑡 ))

=
∑︁
𝑥∈C

𝑞𝑡 (𝑥) exp(−𝜂𝑠𝑡 (𝑥)) − 1 + 𝜂 ⟨𝑞𝑡 , 𝑠𝑡 ⟩

≤
∑︁
𝑥∈C

𝑞𝑡 (𝑥)
[
1 − 𝜂𝑠𝑡 (𝑥) +

𝜂2𝑠𝑡 (𝑥)2

2

]
− 1 + 𝜂 ⟨𝑞𝑡 , 𝑠𝑡 ⟩

=
𝜂2

2

∑︁
𝑥∈C

𝑞𝑡 (𝑥)𝑠𝑡 (𝑥)2 ,
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where we used the inequality exp(𝑥) ≤ 1 − 𝑥 + 𝑥2/2 for 𝑥 ≥ 0. Combining with
Theorem 8.9 recovers the bound in Remark 7.10. Theorem 7.8 is recovered by
assuming that |𝜂𝑠𝑡 (𝑥) | ≤ 1 for all 𝑥 and using the inequality exp(−𝑥) ≤ 1−𝑥+𝑥2

for |𝑥 | ≤ 1 instead.

8.5 Exploration by optimisation

In Section 8.2 we showed how to use exponential weights for 1-dimensional
bandits. While the algorithm there is efficient and straightforward to implement,
much human ingenuity was needed to define the surrogate loss and exploration
distribution. There is a principled way to construct both of these objects that
eliminates the need for imagination at the cost of computational efficiency. Note
that we are not assuming that 𝑑 = 1 in this section. The results and concepts
in this section and the next are connected in a complicated way. You may find
Table 8.1 useful to join the dots.

Assumption 8.11 Throughout this section as well as Sections 8.6 and 8.7 we
assume that C ⊂ 𝐾 is a finite set with 𝑚 ≜ |C | such that:

(1) log𝑚 ≤ 𝑑 log(1 + 16𝑑𝑛2); and
(2) for all 𝑓 ∈ ℱb there exists an 𝑥 ∈ C such that 𝑓 (𝑥) ≤ inf𝑦∈𝐾 𝑓 (𝑦) + 1/𝑛.

Exercise 8.12 ⋆ Prove a cover satisfying the conditions in Assumption 8.11
exists. You may want to combine Proposition 7.4, Proposition 3.10, Proposi-
tion 3.13 and Theorem 3.15.

Let us start by giving the regret bound for the (abstract) Algorithm 8.1.

Theorem 8.13 Let 𝑥★ = arg min𝑥∈C

∑𝑛
𝑡=1 𝑓𝑡 (𝑥) and 𝑝★ ∈ Δ(C ) be a Dirac

on 𝑥★. The expected regret of Algorithm 8.1 relative to 𝑥★ is bounded by

E[Reg𝑛 (𝑥★)] ≤
log𝑚
𝜂

+
𝑛∑︁
𝑡=1

E
[
⟨𝑝𝑡 − 𝑝★, 𝑓𝑡 ⟩ + ⟨𝑝★ − 𝑞𝑡 , 𝑠𝑡 ⟩ +

1
𝜂
𝒮𝑞𝑡 (𝜂𝑠𝑡 )

]
.

Proof The proof follows immediately from Theorem 8.9

E[Reg𝑛 (𝑥★)] =
𝑛∑︁
𝑡=1

E [⟨𝑝𝑡 − 𝑝★, 𝑓𝑡 ⟩]

=

𝑛∑︁
𝑡=1

E [⟨𝑝𝑡 − 𝑝★, 𝑓𝑡 ⟩ + ⟨𝑝★ − 𝑞𝑡 , 𝑠𝑡 ⟩ + ⟨𝑞𝑡 − 𝑝★, 𝑠𝑡 ⟩]

≤ log𝑚
𝜂

+
𝑛∑︁
𝑡=1

E
[
⟨𝑝𝑡 − 𝑝★, 𝑓𝑡 ⟩ + ⟨𝑝★ − 𝑞𝑡 , 𝑠𝑡 ⟩ +

1
𝜂
𝒮𝑞𝑡 (𝜂𝑠𝑡 )

]
,
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where the second equality holds by adding and subtracting ⟨𝑞𝑡 − 𝑝★, 𝑠𝑡 ⟩ and the
inequality by Theorem 8.9. □

Standard methods for analysing concrete instantiations of Algorithm 8.1
essentially always bound the term inside the expectation uniformly for all 𝑡,
independently of 𝑓𝑡 and 𝑞𝑡 and 𝑝★. Note that 𝑓𝑡 and 𝑝★ are unknown, while 𝑞𝑡
is the exponential weights distribution, which is known at the start of round 𝑡.
In light of this, a natural idea is to choose the distribution 𝑝𝑡 and loss estimation
function 𝑠𝑡 that minimise the upper bound. This is the idea we execute now.

Exploration-by-optimisation To simplify the notation, let us momentarily drop
the time indices and let 𝑞 ∈ Δ+

𝑚. The learner samples 𝑋 from some distribution
𝑝 ∈ Δ+

𝑚 and observes𝑌 = 𝑓 (𝑋). The estimated surrogate loss 𝑠 is a vector in R𝑚

(a function from C to R) but the learner chooses it based on the observations 𝑋
and 𝑌 . So let E be the set of all functions 𝑒 : C ×R → R𝑚 with the idea that the
estimated surrogate loss will be the function 𝑠 = 𝑒(𝑋,𝑌 )/𝑝(𝑋). The division by
𝑝(𝑋) is a normalisation that makes a certain function defined below convex (see
Exercise 8.14) and is also the reason why we insist that 𝑝 ∈ Δ+

𝑚 rather than Δ𝑚.
The decision for the learner is to choose the exploration distribution 𝑝 ∈ Δ+

𝑚

and exploration function 𝑒 ∈ E . The adversary chooses 𝑓 ∈ ℱb and 𝑝★ ∈ Δ𝑚.
Looking at Theorem 8.13, we hope you agree that the following function may
be important:

Λ𝜂,𝑞 (𝑝, 𝑒 ||𝑝★, 𝑓 ) =
1
𝜂
E

[
⟨𝑝 − 𝑝★, 𝑓 ⟩ +

〈
𝑝★ − 𝑞, 𝑒(𝑋,𝑌 )

𝑝(𝑋)

〉
+ 1
𝜂
𝒮𝑞

(
𝜂𝑒(𝑋,𝑌 )
𝑝(𝑋)

)]
,

where the expectation is over 𝑋 ∼ 𝑝 and 𝑌 = 𝑓 (𝑋). You might view Λ𝜂,𝑞 as
a function from two pairs of tuples: (𝑝, 𝑒) selected by the learner and (𝑝★, 𝑓 )
selected by the adversary. A fundamental quantity that appears throughout the
following sections is the minimax value of this game, which is defined in stages
by the following quantities:

Λ★𝜂,𝑞 (𝑝, 𝑒) = sup
𝑝★∈Δ𝑚

sup
𝑓 ∈ℱb

Λ𝜂,𝑞 (𝑝, 𝑒 ||𝑝★, 𝑓 ) and

Λ★𝜂,𝑞 = inf
𝑝∈Δ+

𝑚

inf
𝑒∈E

Λ★𝜂,𝑞 (𝑝, 𝑒) and

Λ★ = sup
𝜂>0

sup
𝑞∈Δ+

𝑚

Λ★𝜂,𝑞 .

Exercise 8.14 ⋆ Prove that (𝑝, 𝑒) ↦→ Λ𝜂,𝑞 (𝑝, 𝑒 ||𝑝★, 𝑓 ) is convex for any
𝑝★ ∈ Δ𝑚 and 𝑓 ∈ ℱb. You may find it useful to expand the expectation and use
the fact that 𝑢 ↦→ 𝒮𝑞 (𝑢) is convex, which by the perspective construction (Boyd
and Vandenberghe, 2004, §2.3.3) shows that (𝑢, 𝑣) ↦→ 𝑣𝒮(𝑢/𝑣) is convex on
R𝑑 × (0,∞).
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Since the supremum of convex functions is convex it follows from Exer-
cise 8.14 that (𝑝, 𝑒) ↦→ Λ★𝜂,𝑞 (𝑝, 𝑒) is convex, but note that both E and ℱb are
so large that even evaluating Λ★𝜂,𝑞 (𝑝, 𝑒) may be computationally challenging.
Despite this, these functions are surprisingly easy to handle mathematically, as
we shall see later.

1 args : l e a r n i n g r a t e 𝜂 > 0 , p r e c i s i o n 𝜀 > 0 , C ⊂ 𝐾

2 f o r 𝑡 = 1 to 𝑛

3 compute d i s t r i b u t i o n 𝑞𝑡 (𝑥) =
exp(−𝜂∑𝑡−1

𝑢=1 𝑠𝑢 (𝑥 ))∑
𝑦∈C exp(−𝜂∑𝑡−1

𝑢=1 𝑠𝑢 (𝑦))
4 f i n d d i s t r i b u t i o n 𝑝𝑡 ∈ Δ+

𝑚 and 𝑒𝑡 ∈ E such t h a t
Λ★𝜂,𝑞𝑡 (𝑝𝑡 , 𝑒𝑡 ) ≤ Λ★𝜂,𝑞𝑡 + 𝜀

5 sample 𝑋𝑡 from 𝑝𝑡 and o b s e r v e 𝑌𝑡 = 𝑓𝑡 (𝑋𝑡 )
6 compute 𝑠𝑡 = 𝑒𝑡 (𝑋𝑡 , 𝑌𝑡 )/𝑝𝑡 (𝑋𝑡 )

Algorithm 8.3: Exploration by optimisation

The following theorem is almost immediate:

Theorem 8.15 Under Assumptions 8.1 and 8.11, the expected regret of
Algorithm 8.3 is bounded by

E[Reg𝑛] ≤ 1 + log𝑚
𝜂

+ 𝑛𝜂Λ★ + 𝑛𝜂𝜀 .

Proof Let 𝑥★ = arg min𝑥∈C

∑𝑛
𝑡=1 𝑓𝑡 (𝑥) and 𝑝★ ∈ Δ(C ) be a Dirac on 𝑥★. By

Assumption 8.11, Theorem 8.13 and the definition of 𝑠𝑡 in Algorithm 8.3,

E[Reg𝑛] ≤ 1 + E[Reg𝑛 (𝑥★)]

≤ 1 + log𝑚
𝜂

+
𝑛∑︁
𝑡=1

E
[
⟨𝑝𝑡 − 𝑝★, 𝑓𝑡 ⟩ + ⟨𝑝★ − 𝑞𝑡 , 𝑠𝑡 ⟩ +

1
𝜂
𝒮𝑞𝑡 (𝜂𝑠𝑡 )

]
≤ 1 + log𝑚

𝜂
+ 𝑛𝜂Λ★ + 𝑛𝜂𝜀 . □

Combining the definition with Theorem 8.15 immediately yields the following
corollary:

Corollary 8.16 Under the same conditions as Theorem 8.15 and with

𝜂 =

√︄
log𝑚

𝑛(𝜀 + Λ★) ,
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the regret of Algorithm 8.3 is upper bounded by

E[Reg𝑛] ≤ 1 + 2
√︁
𝑛Λ★ log𝑚 + 2

√︁
𝑛𝜀 log𝑚 𝜀→0→ 1 + 2

√︁
𝑛Λ★ log𝑚 .

In the next section we explain a connection between Λ★ and a concept used for
analysing Bayesian bandit problems called the information ratio. This method
eventually shows that

Λ★ = 𝑂

(
𝑑4 log(𝑛𝑑)

)
.

Combining this with Assumption 8.11 to bound log𝑚 = 𝑂 (𝑑 log(𝑛𝑑)) and with
Corollary 8.16 shows that the regret of Algorithm 8.3 is bounded by

E[Reg𝑛] = 𝑂
(
𝑑2.5√𝑛 log(𝑑𝑛)

)
.

Let us emphasise again that this is not much of an algorithm because there is no
known computationally efficient method for solving the optimisation problem
that defines 𝑝𝑡 and 𝑒𝑡 .

8.6 Bayesian convex bandits

In the Bayesian version of the convex bandit problem the learner is given a
distribution 𝜉 on ℱ

𝑛
b

. The loss functions ( 𝑓𝑡 )𝑛𝑡=1 are sampled from 𝜉 and the
Bayesian regret of a learning algorithm 𝒜 is

bReg𝑛 (𝒜, 𝜉) = E

[
sup
𝑥∈𝐾

𝑛∑︁
𝑡=1

( 𝑓𝑡 (𝑋𝑡 ) − 𝑓𝑡 (𝑥))
]
,

where by ‘learning algorithm’ we simply mean a function that (measurably) maps
history sequences to distributions over actions. Note that here the expectation
integrates over the randomness in the loss functions and hence the maximum
over 𝑥 ∈ 𝐾 appears inside the expectation. Like the rest of the book we will
not say much about constructing probability spaces and measurability. The
measurable space on which 𝜉 is defined sometimes plays an important technical
role. Generally speaking in what follows it is assumed that the discrete 𝜎-algebra
is used on ℱ

𝑛
b

and that 𝜉 really is a distribution in the sense that it is supported
on countably many atoms. bReg𝑛 (𝒜, 𝜉) is nothing more than the expectation of
the standard regret, integrating over the loss functions with respect to the prior
𝜉. The minimax Bayesian regret is

bReg★𝑛 (𝐾) = sup
𝜉

inf
𝒜

bReg𝑛 (𝒜, 𝜉) .
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Compare this to the minimax adversarial regret, which is

Reg★𝑛 (𝐾) = inf
𝒜

sup
( 𝑓𝑡 )𝑛𝑡=1

Reg𝑛 (𝒜, ( 𝑓𝑡 )𝑛𝑡=1) .

Whenever you see expression like this, a minimax theorem should come to mind.
Indeed, the minimax adversarial regret can be rewritten as

Reg★𝑛 (𝐾) = inf
𝒜

sup
𝜉

bReg𝑛 (𝒜, 𝜉) .

By interpreting an algorithm as a probability measure over deterministic
algorithms both 𝒜 ↦→ bReg𝑛 (𝒜, 𝜉) and 𝜉 ↦→ bReg𝑛 (𝒜, 𝜉) are linear functions
and from this one should guess the following theorem as a consequence of some
kind of minimax theorem.

Theorem 8.17 (Lattimore and Szepesvári 2019) Reg★𝑛 (𝐾) = bReg★𝑛 (𝐾).

Exercise 8.18 ⋆⋆ Actually, Lattimore and Szepesvári (2019) only prove
that Reg★𝑛 (𝐾) = bReg★𝑛 (𝐾) when the learner is restricted to play on a finite
subset of 𝐾 . Prove that this implies Theorem 8.17.

Theorem 8.17 means that one way to bound the adversarial regret is via the
Bayesian regret. One positive aspect of this idea is that the existence of a prior
makes the Bayesian setting more approachable. On the other hand, constructing
a prior-dependent algorithm showing that the Bayesian regret is small for any
prior does not give you an algorithm for the adversarial setting. The approach is
non-constructive.

Remark 8.19 The above setup is the Bayesian version of the adversarial
convex bandit problem. In the Bayesian version of the stochastic convex bandit
problem the prior is on ℱb rather than ℱ

𝑛
b

and the observation is 𝑓 (𝑋𝑡 ) + 𝜀𝑡
where 𝑓 is sampled at the beginning of the interaction from the prior. Sometimes
the noise follows some known distribution. Alternatively, the prior could be
over both the loss function and the noise distribution.

8.7 Duality and the information ratio

We now briefly explain the main tool for bounding the Bayesian regret. Let 𝜈
be a probability measure on C ×ℱb and 𝑝 ∈ Δ(C ). Suppose that (𝑋, 𝑋★, 𝑓 )
has law 𝑝 ⊗ 𝜈, which is a probability measure on C × C × ℱb. Later 𝜈 will
be the law of (𝑋★, 𝑓𝑡 ) under the posterior associated with prior 𝜉 and data
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𝑋1, 𝑌1, . . . , 𝑋𝑡−1, 𝑌𝑡−1. Hence it is not true in general that 𝑋★ minimises 𝑓𝑡 .
Define

Δ(𝑝, 𝜈) = E[ 𝑓 (𝑋) − 𝑓 (𝑋★)] and
𝐼 (𝑝, 𝜈) = E

[
KL

(
P𝑋★ |𝑋, 𝑓 (𝑋) (·), P𝑋★ (·)

) ]
.

Intuitively, Δ(𝑝, 𝜈) is the expected regret suffered when sampling 𝑋 from 𝑝

relative to 𝑋★ on loss 𝑓 sampled from 𝜈, while 𝐼 (𝑝, 𝜈) is the information gained
about 𝑋★ when observing 𝑋 and 𝑓 (𝑋). The information ratio captures the
exploration/exploitation trade-off made by a learner and is defined by

Ψ(𝑝, 𝜈) = Δ(𝑝, 𝜈)2

𝐼 (𝑝, 𝜈) .

The information ratio will be small when the regret under 𝑝 is small relative to
the information gained about the optimal action. The minimax information ratio
is

Ψ★ = sup
𝜈∈Δ(C×ℱb )

min
𝑝∈Δ(C )

Ψ(𝑝, 𝜈) .

We can now introduce the information-directed sampling algorithm, which
is designed for minimising the Bayesian regret. In every round the algorithm
computes the posterior based on information observed so far and then samples
its action 𝑋𝑡 from the distribution 𝑝𝑡 minimising the information ratio.

1 args : p r i o r 𝜉 on ℱ
𝑛
b

2 f o r 𝑡 = 1 to 𝑛

3 compute t h e p o s t e r i o r 𝜈𝑡 = P𝑡−1 ((𝑋★, 𝑓𝑡 ) ∈ ·)
4 f i n d 𝑝𝑡 = arg min𝑝∈Δ(C ) Ψ(𝑝, 𝜈𝑡 )
5 sample 𝑋𝑡 from 𝑝𝑡 and o b s e r v e 𝑌𝑡 = 𝑓𝑡 (𝑋𝑡 )

Algorithm 8.4: Information-directed sampling

The next theorem bounds the regret of Algorithm 8.4 in terms of the minimax
information ratio.

Theorem 8.20 Under Assumption 8.11, the Bayesian minimax regret is
bounded by

bReg★𝑛 (𝐾) ≤ 1 +
√︁
𝑛Ψ★ log𝑚 ≤ 1 +

√︃
𝑑𝑛Ψ★ log

(
1 + 16𝑑𝑛2) .

Proof Let 𝜉 ∈ Δ(ℱ𝑛
b
) be any prior distribution and 𝒜 be information-directed
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sampling (Algorithm 8.4). By Assumption 8.11, for all 𝑓 ∈ ℱb there exists an
𝑥 ∈ C with

𝑓 (𝑥) ≤ inf
𝑦∈𝐾

𝑓 (𝑦) + 1
𝑛
.

Therefore, with 𝑋★ = arg min𝑥∈C

∑𝑛
𝑡=1 𝑓𝑡 , Assumption 8.11 implies that

bReg𝑛 (𝜉,𝒜) = E

[
sup
𝑥∈𝐾

𝑛∑︁
𝑡=1

( 𝑓𝑡 (𝑋𝑡 ) − 𝑓𝑡 (𝑥))
]
≤ 1 + E

[
𝑛∑︁
𝑡=1

( 𝑓𝑡 (𝑋𝑡 ) − 𝑓𝑡 (𝑋★))
]
.

Let 𝜈𝑡 = P𝑡−1 ((𝑋★, 𝑓𝑡 ) ∈ ·), which is a probability measure on C ×ℱb. The
learner samples 𝑋𝑡 from a distribution 𝑝𝑡 ∈ Δ(C ) such that Ψ(𝑝𝑡 , 𝜈𝑡 ) ≤ Ψ★,
which means that

Δ(𝑝𝑡 , 𝜈𝑡 )2 ≤ 𝐼 (𝑝𝑡 , 𝜈𝑡 )Ψ★ . (8.12)

By the tower rule for conditional expectation and the definition of Δ(𝑝𝑡 , 𝜈𝑡 ),

E

[
𝑛∑︁
𝑡=1

( 𝑓𝑡 (𝑋𝑡 ) − 𝑓𝑡 (𝑋★))
]
= E

[
𝑛∑︁
𝑡=1

Δ(𝑝𝑡 , 𝜈𝑡 )
]
.

By the definition of the information ratio,

E

[
𝑛∑︁
𝑡=1

Δ(𝑝𝑡 , 𝜈𝑡 )
]
(a)

≤ E

[
𝑛∑︁
𝑡=1

√︁
𝐼 (𝑝𝑡 , 𝜈𝑡 )Ψ★

]
(b)

≤

√√√
𝑛Ψ★E

[
𝑛∑︁
𝑡=1

𝐼𝑡 (𝑝𝑡 , 𝜈𝑡 )
]

(c)

=

√︃
𝑛Ψ★E

[
KL(P𝑋★ |𝑋1 ,𝑌1 ,...,𝑋𝑛 ,𝑌𝑛 , P𝑋★)

]
(d)

≤
√︁
𝑛Ψ★ log(𝑚) ,

where (a) follows from (8.12), (b) from Cauchy-Schwarz and (c) from the
chain rule for information gain (Cover and Thomas, 2012, §2.5). (d) follows
because 𝑋★ ∈ C and the information in any C -valued random variable is at
most log |C | = log𝑚. Finally, bound log𝑚 using Assumption 8.11. □

There is no obvious reason whyΨ★ should be well-controlled. The information
ratio is bounded by the following theorem:

Theorem 8.21 (Lattimore 2020) Ψ★ ≤ 𝐶𝑑4 log(𝑛𝑑) where 𝐶 > 0 is an
absolute constant.

The proof of Theorem 8.21 is quite involved and is not included here. Even
when you can sample from 𝜈, the distribution 𝑝 witnessing the upper bound on
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𝑝 ↦→ Ψ(𝑝, 𝜈) involves positioning certain convex bodies in minimal surface
area position and is not practical to compute. Combining Theorem 8.21 and
Theorem 8.20 and Theorem 8.17 yields the following theorem:

Theorem 8.22 Reg★𝑛 (𝐾) = bReg★𝑛 (𝐾) ≤ 𝐶𝑑2.5√𝑛 log(𝑑𝑛).

The above theorem shows that the adversarial minimax regret and Bayesian
minimax regret can be bounded in terms of the minimax information ratio. The
next theorem shows that the adversarial regret of Algorithm 8.3 can also be
bounded in terms of the minimax information ratio.

Theorem 8.23 (Lattimore and György 2021b) Λ★ ≤ 1
4Ψ

★.

Except for the 1-dimensional setting (Section 8.2), the only bounds we have on
Λ★ are via Theorem 8.23 and bounds on Ψ★. Remarkably the constant 1

4 means
the upper bounds obtained by the mirror descent analysis of Algorithm 8.3 and
information-directed sampling exactly match:

bReg★𝑛 (𝐾) ≤ 1 +
√︁
𝑛Ψ★ log𝑚 by Theorem 8.20

Reg★𝑛 (𝐾) ≤ 1 + 2
√︁
𝑛Λ★ log𝑚 by Corollary 8.16

≤ 1 +
√︁
𝑛Ψ★ log𝑚 . by Theorem 8.23

Proof sketch of Theorem 8.23 We outline the key ingredients of the argument,
ignoring measure-theoretic and topological challenges associated with applying
the minimax theory. Let 𝐴 = Δ𝑚 ×ℱb and Δ(𝐴) be the space of probability
distributions on 𝐴 with the discrete 𝜎-algebra. Given 𝑝 ∈ Δ+

𝑚 and 𝑒 ∈ E and
𝜈 ∈ Δ(𝐴), let

Λ𝜂,𝑞 (𝑝, 𝑒 ||𝜈) =
∫
𝐴

Λ𝜂,𝑞 (𝑝, 𝑒 ||𝑝★, 𝑓 ) d𝜈(𝑝★, 𝑓 )

=
1
𝜂
E

[
⟨𝑝 − 𝑝★, 𝑓 ⟩ +

〈
𝑝★ − 𝑞, 𝑒(𝑋,𝑌 )

𝑝(𝑋)

〉
+ 1
𝜂
𝒮𝑞

(
𝜂𝑒(𝑋,𝑌 )
𝑝(𝑋)

)]
, (8.13)

where expectation integrates over (𝑝★, 𝑓 , 𝑋) with law 𝜈 ⊗ 𝑝 and 𝑌 = 𝑓 (𝑋).
The expectation 𝜈 ↦→ Λ𝜂,𝑞 (𝑝, 𝑒 ||𝜈) is linear and Exercise 8.14 shows that
(𝑝, 𝑒) ↦→ Λ𝜂,𝑞 (𝑝, 𝑒 ||𝜈) is convex. This hints at the possibility of applying a
minimax theorem. Technically you should use Sion’s theorem, which besides
some kind of convex/concave structure also needs compactness. Let us just say
now that the following holds:

Λ★𝜂,𝑞 = inf
𝑝∈Δ+

𝑚

inf
𝑒∈E

sup
𝜈∈Δ(𝐴)

Λ𝜂,𝑞 (𝑝, 𝑒 ||𝜈) = sup
𝜈∈Δ(𝐴)

inf
𝑝∈Δ+

𝑚

inf
𝑒∈E

Λ𝜂,𝑞 (𝑝, 𝑒 ||𝜈) .
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Hence, the proof will be completed if we can show that for all 𝜈 ∈ Δ(𝐴),

inf
𝑝∈Δ+

𝑚

inf
𝑒∈E

Λ𝜂,𝑞 (𝑝, 𝑒 ||𝜈) ≤ Ψ★ . (8.14)

When 𝜈 is given, it turns out that the estimation function 𝑒 minimising (8.13)
can be computed by differentiation and is

𝑒(𝑥, 𝑦) = 𝑝(𝑥)
𝜂

(𝑅′ (𝑞) − 𝑅′ (E[𝑝★ | 𝑓 (𝑥) = 𝑦])) .

Two observations: (1) the above is not obvious – you need to confirm it yourself.
(2) the conditional expectation is only well-defined if 𝑥 is in the support of 𝑝 and
𝑦 is in the support of 𝑓 (𝑥). When this is not the case you may define 𝑒(𝑥, 𝑦) in
any way you please. Let 𝑝 ∈ Δ+

𝑚 and 𝑝po = E[𝑝★ |𝑋,𝑌 ] and 𝑝pr = E[𝑝★], which
are the posterior and prior distributions, respectively. Then

Λ𝜂,𝑞 (𝑝, 𝑒 ||𝜈) =
1
𝜂
E

[
⟨𝑝 − 𝑝★, 𝑓 ⟩ +

〈
𝑝★ − 𝑞, 𝑒(𝑋,𝑌 )

𝑝(𝑋)

〉
+ 1
𝜂
𝒮𝑞

(
𝜂𝑒(𝑋,𝑌 )
𝑝(𝑋)

)]
(a)

=
Δ(𝑝, 𝜈)
𝜂

+ 1
𝜂2E

[〈
𝑝★, 𝑅

′ (𝑞) − 𝑅′ (𝑝po)
〉
− 𝑅★(𝑅′ (𝑞)) + 𝑅★(𝑅′ (𝑝po))

]
(b)

=
Δ(𝑝, 𝜈)
𝜂

+ 1
𝜂2E

[〈
𝑝pr, 𝑅

′ (𝑞)
〉
−

〈
𝑝po, 𝑅

′ (𝑝po)
〉
− 𝑅★(𝑅′ (𝑞)) + 𝑅★(𝑅′ (𝑝po))

]
(c)

=
Δ(𝑝, 𝜈)
𝜂

− 1
𝜂2E

[
D𝑅★ (𝑅′ (𝑞), 𝑅′ (𝑝pr)) + D𝑅★ (𝑅′ (𝑝pr), 𝑅′ (𝑝po))

]
(d)

≤ Δ(𝑝, 𝜈)
𝜂

− 1
𝜂2E

[
D𝑅★ (𝑅′ (𝑝pr), 𝑅′ (𝑝po))

]
(e)

=
Δ(𝑝, 𝜈)
𝜂

− 1
𝜂2E

[
D𝑅 (𝑝po, 𝑝pr)

]
,

where (a) follows from the definition of Λ𝜂,𝑞 (𝑝, 𝑒 ||𝜈) and by substituting the
definition of 𝑒 and 𝒮𝑞 (𝑢) = D𝑅★ (𝑅′ (𝑞) − 𝑢, 𝑅′ (𝑞)). (b) follows from the
definitions of 𝑝po and 𝑝pr. (c) by the definition of the dual Bregman divergences.
(d) follows since Bregman divergences are always non-negative. (e) follows
from duality (Proposition 8.7). Ideally we would now choose 𝑝 to be the
minimiser of the information ratio Ψ(·, 𝜈), but this is generally only supported on
two coordinates and hence not in Δ+

𝑚 for 𝑚 > 2. Fortunately it is straightforward
to show that when 𝑝minimisesΨ(·, 𝜈), then [0, 1) ∋ 𝛿 ↦→ Ψ((1−𝛿)𝑝+𝛿1/𝑚, 𝜈)
is continuous and hence there exists a 𝑝 ∈ Δ+

𝑚 such that Ψ(𝑝, 𝜈) ≤ Ψ★ + 𝜀 for
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𝑂
(
𝑑2.5√𝑛 log(𝑛𝑑)

)
Theorem 8.21

≤

bayesian bReg★𝑛 (𝐾)
Theorem 8.15

≤
Algorithm 8.4

𝑂

(√︁
𝑛𝑑Ψ★ log(𝑛𝑑)

)
Theorem 8.17

=

Theorem 8.23

≤

adversarial Reg★𝑛 (𝐾)
Theorem 8.20

≤
Algorithm 8.3

𝑂

(√︁
𝑛𝑑Λ★ log(𝑛𝑑)

)
Table 8.1: The relationship between the results in this chapter. The figure
shows two ways to bound Reg★𝑛 (𝐾). The first is completely non-constructive
via minimax duality (Theorem 8.17). The second is by bounding the regret of
Algorithm 8.3. The latter is only to be preferred slightly since Algorithm 8.3
has no obvious efficient implementation.

any 𝜀 > 0. Let 𝜀 > 0 and 𝑝 ∈ Δ+
𝑚 be such that Ψ(𝑝, 𝜈) ≤ Ψ★ + 𝜀. Then

Λ𝜂,𝑞 (𝑝, 𝑒 ||𝜈) ≤
Δ(𝑝, 𝜈)
𝜂

− 1
𝜂2E

[
D𝑅 (𝑝po, 𝑝pr)

]
≤ 1
𝜂

√︁
(Ψ★ + 𝜀)E[D𝑅 (𝑝po, 𝑝pr)] −

1
𝜂2E[D𝑅 (𝑝po, 𝑝pr)]

≤ sup
𝑥≥0

(
𝑥
√
Ψ★ + 𝜀 − 𝑥2

)
=

Ψ★ + 𝜀
4

,

where in the second inequality we used the definition of 𝑝 and the information
ratio. Since 𝜀 > 0 was arbitrary, (8.14) holds and the proof is complete. □

8.8 Notes

8.i: Besides inconsequential simplifications, the kernel-based method in one
dimension was designed by Bubeck et al. (2017). They extended the general
idea to the higher dimensions to design a polynomial time algorithm with
regret 𝑑10.5√𝑛, which was the first polynomial time algorithm with poly(𝑑)

√
𝑛

regret in the adversarial setting. Sadly there are many challenges to generalising
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Algorithm 8.2 and ultimately the higher-dimensional version is not realistically
implementable.

8.ii: Information-directed sampling and the core analysis was introduced
by Russo and Van Roy (2014). The idea has been generalised to frequentist
settings, which are explained in depth by Kirschner (2021) who also details
many properties of the information ratio. The application to convex bandits to
prove bounds non-constructively for adversarial bandit problems is by Bubeck
et al. (2015), who were the first to show that 𝑂̃ (

√
𝑛) regret is possible for

adversarial convex bandits for losses in ℱb. The extension to higher dimensions
is by Bubeck and Eldan (2018) and Lattimore (2020). The latter shows that the
minimax regret for adversarial bandits is at most 𝑂̃ (𝑑2.5√𝑛). This remains the
best known bound, though it is matched in all but logarithmic terms by online
Newton step (Chapter 11).

8.iii: The oldest and most well-known algorithm for Bayesian bandits is
Thompson sampling (Thompson, 1933), which in every round samples a loss
function from the posterior and plays the action that minimises the sampled
loss. This algorithm has near-optimal Bayesian regret for some models, like
finite-armed bandits and linear bandits (Russo and Van Roy, 2016). For convex
bandits Bakhtiari et al. (2025) showed that Thompson sampling has 𝑂̃ (

√
𝑛)

Bayesian regret in the stochastic setting when 𝑑 = 1. They also show that
for large 𝑑 there exist priors for which the regret of Thompson sampling is
exponential in the dimension. In the Bayesian adversarial setting with 𝑑 = 1
it is not known if Thompson sampling has 𝑂̃ (

√
𝑛) regret. Bubeck et al. (2015)

showed that it does not have a bounded information ratio, which means that new
proof techniques would be needed to prove 𝑂̃ (

√
𝑛) regret.

8.iv: The duality between mirror descent and the information ratio was
established by Zimmert and Lattimore (2019) and Lattimore and György
(2021b) with the latter proving the more difficult direction. These connections
have led to a beautiful theory on the complexity of sequential decision making in
great generality (Foster et al., 2021, 2022). In brief, algorithms like exploration-
by-optimisation are provably near-optimal in a minimax sense. There are many
subtleties and you should read the aforementioned works.

8.v: Bakhtiari et al. (2025) prove that the minimax information ratio satisfies
Ψ★ = Ω̃(𝑑2), which shows that the best possible bound obtainable via a naive
application of the information-theoretic machinery is 𝑂̃ (𝑑1.5√𝑛).

Exercise 8.24 ⋆⋆�? Use the arguments by Zimmert and Lattimore (2019)
and the lower bound on Ψ★ by Bakhtiari et al. (2025) to prove that Λ★ = Ω̃(𝑑2).
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The exercise shows that no matter how you explore or estimate losses, the
classical analysis of exponential weights cannot yield a bound on the regret
better than 𝑂̃ (𝑑1.5√𝑛). Importantly, however, lower bounds on the complexity
measures do not imply lower bounds on the minimax regret. There exist other
settings where the minimax regret is better than the upper bound in Theorem 8.20.
For example, Lattimore and Hao (2021) show that in bandit phase retrieval
the information-theoretic machinery suggests a bound of 𝑂̃ (𝑑1.5√𝑛) while the
minimax regret is Θ̃(𝑑

√
𝑛)



9
Cutting plane methods

Like the bisection method (Chapter 4), cutting plane methods are most naturally
suited to the stochastic setting. For the remainder of the chapter we assume the
setting is stochastic and the loss function is bounded:

Assumption 9.1 The following hold:

(1) The setting is stochastic, meaning that 𝑓𝑡 = 𝑓 for all 𝑡; and
(2) the loss 𝑓 is in ℱb.

The bounds established in this chapter are worse than what we will show
for online Newton step in Chapter 10, but the analysis is considerably more
straightforward and the algorithms are easy to tune. To keep things simple
we study the sample complexity rather than the regret, though most likely
the algorithms and analysis can be adapted to the regret setting without too
much difficulty as we discuss briefly in the notes. This chapter also introduces
an algorithm for infinite-armed bandits that may be of independent interest.
The highlight of the chapter is a mechanism for finding a suitable cutting
plane with only noisy zeroth-order access to the loss function (Section 9.4).
This is then applied to bound the sample complexity of the center of gravity
method (Section 9.5) and the method of the inscribed ellipsoid (Section 9.6).
In both cases the sample complexity is 𝑂̃ (𝑑4/𝜀2) with different computational
properties.

Stochastic oracle notation Because of the modular nature of the algorithms
in this chapter, it is not practical to keep track of the round of interaction.
This necessitates a new notation for the interaction protocol. When we write
𝑦 ∼ 𝑓 (𝑥) in an algorithm its means that 𝑦 = 𝑓 (𝑥) + 𝜀 where 𝜀 is 1-subgaussian
conditioned on the history (all previous queries).

116
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9.1 High-level idea

The basic idea is to let 𝑆 be a subset of 𝐾 with non-negligible volume and on
which the loss 𝑓 is nearly minimised. Then initialise 𝐾1 = 𝐾 and recursively
compute a decreasing sequence (𝐾𝑘) of subsets such that at least one of the
following holds:

◦ The ‘center’ 𝑥𝑘 of 𝐾𝑘 is a near-minimiser of 𝑓 .
◦ 𝐾𝑘+1 ⊂ 𝐾𝑘 contains 𝑆.

Note there are many definitions of the center of a convex body as will soon see.
The largest 𝑘max such that 𝐾𝑘max contains 𝑆 can be bounded as a function of
how fast 𝑘 ↦→ vol(𝐾𝑘) decreases. Combining this with the above requirements
on (𝐾𝑘) and (𝑥𝑘) yields a bound on how many iterations 𝑘max are needed
before there exists a near-minimiser among 𝑥1, . . . , 𝑥𝑘max . Generally speaking
𝑘max = poly(𝑑) and the final step is to query the loss on 𝑥1, . . . , 𝑥𝑘max to identify
a near-minimiser among them (Section 9.3). In the one-dimensional problem
there is limited scope for imagination but in high dimensions there are several
intersecting complexities. Namely, what geometric procedure will reduce the
volume sufficiently fast? Can it be computed efficiently and how does it interact
with convexity? Standard methods are:

◦ The ellipsoid method (Shor, 1977; Yudin and Nemirovskii, 1977, 1976).
◦ The center of gravity method (Newman, 1965; Levin, 1965).
◦ Vaidya’s method (Vaidya, 1996) and its refinement by Lee et al. (2015).
◦ The analytic center method (Nesterov, 1995; Atkinson and Vaidya, 1995).
◦ The method of the inscribed ellipsoid (Tarasov et al., 1988).

We focus on the center of gravity method, ellipsoid method and method of
inscribed ellipsoid. Let us make the considerations above a little more concrete.
By Lemma 9.3 below there exists a (usually non-regular) simplex 𝑆 ⊂ 𝐾 such
that the loss 𝑓 is near-optimal for all 𝑥 ∈ 𝑆 and log(vol(𝐾)/vol(𝑆)) = 𝑂̃ (𝑑).
Remember a half-space is a set 𝐻 = {𝑦 : ⟨𝑦 − 𝑥, 𝜂⟩ ≤ 0} ≜ 𝐻 (𝑥, 𝜂) for nonzero
direction 𝜂 ∈ R𝑑 and point 𝑥 ∈ R𝑑 . We will study three methods, which
classically operate as follows (see also Figure 9.1):

◦ The center of gravity method starts with 𝐾1 = 𝐾 and iteratively updates
𝐾𝑘+1 = 𝐾𝑘 ∩ 𝐻𝑘 where 𝐻𝑘 is a half-space with boundary 𝜕𝐻𝑘 passing
close to the center of mass 𝑥𝑘 of 𝐾𝑘 . We additionally insist that either 𝑥𝑘 is
near-optimal or 𝐻𝑘 contains 𝑆. A generalisation of Grünbaum’s inequality
shows that log vol(𝐾𝑘+1) ≤ log vol(𝐾) − 𝑐𝑘 for some universal constant
𝑐 > 0. Suppose now that 𝑥1, . . . , 𝑥𝑘 are not near-optimal. Then by induction
𝑆 ⊂ 𝐾𝑘+1. But this implies that vol(𝐾𝑘+1) ≥ vol(𝑆) and this is only possible
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for 𝑘 = 𝑂̃ (𝑑). Consequentially, if 𝑘 = Θ̃(𝑑), then one of 𝑥1, . . . , 𝑥𝑘 is
near-optimal. With deterministic zeroth-order access to the loss function
the learner can simply return the arg min{ 𝑓 (𝑥) : 𝑥 ∈ 𝑥1, . . . , 𝑥𝑘} while
with noise it can treat the 𝑘 candidates as a finite-armed bandit and use an
elementary pure exploration bandit algorithm to approximate the arg min as
explained in Section 9.3. In Remark 9.5 we explain why 𝑆 is chosen to be a
simplex.

◦ The method of the inscribed ellipsoid is the same as the center of gravity
method, but rather than using center of mass it uses the center of the
largest ellipsoid contained in 𝐾𝑘 . It can be shown that log vol(𝐾𝑘+1) ≤
log vol(𝐾) + 𝑂̃ (𝑑) − 𝑐𝑘 for universal constant 𝑐 > 0. Hence, like the center
of gravity method, the number of iterations where 𝑆 ⊂ 𝐾𝑘+1 is at most 𝑂̃ (𝑑).

◦ The ellipsoid method starts with an ellipsoid 𝐸1 such that 𝐾 ⊂ 𝐸1. The
ellipsoid is updated by finding a half-space𝐻𝑘 with boundary passing close to
the center of 𝐸𝑘 and such that 𝑆 ⊂ 𝐻𝑘 and 𝐸𝑘+1 is calculated as the smallest
ellipsoid containing 𝐸𝑘∩𝐻𝑘 . The classical theory of the shallow cut ellipsoid
method shows that log vol(𝐸𝑘+1) ≤ log vol(𝐸1) − 𝑐𝑘

𝑑
for some universal

constant 𝑐 > 0. Hence, provided that log vol(𝐸1) ≤ log vol(𝐾) + 𝑂̃ (𝑑), the
number of iterations is at most 𝑂̃ (𝑑2).

The big question is how to find the half-spaces passing close to the relevant
center and that contains the near-optimal simplex with high probability. Besides
this there are many details to be sorted out. Most notably, how close to the center
of mass or center of ellipsoid do we need the half-space to be?

Remark 9.2 The center of gravity and inscribed ellipsoid methods require
only 𝑂̃ (𝑑) iterations while the ellipsoid method needs 𝑂̃ (𝑑2). The advantage of
the latter is the remarkable fact that the smallest ellipsoid containing 𝐸 ∩ 𝐻 for
ellipsoid 𝐸 and half-space 𝐻 has a closed-formed expression, while estimating
the center of mass or finding the maximum volume inscribed ellipsoid is less
elementary.

We finish with the promised lemma establishing the existence of a near-optimal
simplex 𝑆.

Lemma 9.3 Suppose that 𝐾 is a convex body and 𝑓 ∈ ℱb. Then, for any
𝜀 ∈ (0, 1), there exists a simplex 𝑆 = conv(𝑥1, . . . , 𝑥𝑑+1) ⊂ 𝐾 such that
𝑓 (𝑥) ≤ inf𝑦∈𝐾 𝑓 (𝑦) + 𝜀 for all 𝑥 ∈ 𝑆 and

vol(𝑆) ≥
( 𝜀

2

)𝑑 vol(𝐾)
𝑑! vol(B𝑑

𝑑
)
.
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(a) Center of gravity (b) Inscribed ellipsoid (c) Ellipsoid method

Figure 9.1: An illustration of one iteration of the center of gravity, inscribed
ellipsoid and ellipsoid methods.

And in particular, by Proposition A.1(1), log(vol(𝑆)) = log(vol(𝐾)) −
𝑂 (𝑑 log(𝑑/𝜀)).

Proof The construction is illustrated in Figure 9.2. Let 𝑓★ = inf𝑥∈𝐾 𝑓 (𝑥).
Suppose that 𝐾 is in John’s position so that by Theorem 3.15, B𝑑1 ⊂ 𝐾 ⊂
B𝑑
𝑑
. Letting 𝑒1, . . . , 𝑒𝑑 be the standard basis vectors. Then obviously 𝑇 =

conv(0, 𝑒1, . . . , 𝑒𝑑) ⊂ 𝐾. Let 𝑥 be some point such that 𝑓 (𝑥) ≤ 𝑓★ + 𝜀
2

and 𝑆 = {(1 − 𝜀
2 )𝑥 + 𝜀

2 𝑦 : 𝑦 ∈ 𝑇}. Then, for any 𝑧 ∈ 𝑆 there exists a
𝑦 ∈ 𝑇 such that 𝑧 = (1 − 𝜀

2 )𝑥 + 𝜀
2 𝑦 and since 𝑓 ∈ ℱb is bounded and

convex, 𝑓 (𝑧) ≤ (1 − 𝜀
2 ) 𝑓 (𝑥) +

𝜀
2 𝑓 (𝑦) ≤ 𝑓 (𝑥) + 𝜀/2 ≤ 𝑓★ + 𝜀. Furthermore,

vol(𝑇) = 1/𝑑! and

vol(𝑆) =
( 𝜀

2

)𝑑
vol(𝑇) =

( 𝜀
2

)𝑑 1
𝑑!
.

Meanwhile, vol(𝐾) ≤ vol(B𝑑
𝑑
), which implies that

vol(𝑆) ≥
( 𝜀

2

)𝑑 vol(𝐾)
𝑑! vol(B𝑑

𝑑
)
.

The result for general 𝐾 follows via an affine map into John’s position. □

Remark 9.4 Lemma 9.3 is moderately crude. For example, you can improve
the result by taking 𝑇 to be the regular simplex inside B𝑑1 . Alternatively one
may try to avoid using John’s theorem and letting 𝑇 be the simplex of largest
volume contained in 𝐾 . For this simplex it is known that for all convex bodies 𝐾 ,
(vol(𝑇)/vol(𝐾))1/𝑑 ≥ 𝑐/

√
𝑑 for some absolute constant 𝑐 > 0 and this is not

improvable (Galicer et al., 2019). For our purpose, however, these refinements
make only negligible differences to the constants in our regret bounds.

Remark 9.5 You might wonder why 𝑆 is a simplex rather than just the level
set {𝑥 : 𝑓 (𝑥) ≤ 𝑓★ + 𝜀} which contains 𝑆. The reason is that later we will want
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to prove that 𝑆 is in some randomised half-space with high probability and for
this it suffices to show that the vertices of 𝑆 are contained in the half-space with
high probability, which involves a union bound over the 𝑑 + 1 vertices. Any
convex shape with poly(𝑑) vertices would be sufficient. But there is no hope to
improve the bounds in this chapter by modifying this construction except for
miniscule constants.

𝑇

B𝑑
𝑑

B𝑑1

𝐾
𝑥

𝑆

Figure 9.2: The construction used in the proof of Lemma 9.3.

9.2 Infinite-armed bandits

We make a brief aside to study a kind of infinite-armed bandit problem. Suppose
that 𝜌 is a probability measure on 𝐾 and ℎ : 𝐾 → (−∞, 1] is an unknown
function such that E[ℎ(𝑋)] ≥ 0 when 𝑋 has law 𝜌. In contrast to the rest of the
book, we are looking for a procedure for (crudely) maximising ℎ. We suppose a
learner can sample from 𝜌 and for any 𝑥 ∈ 𝐾 the learner can obtain an unbiased
estimate of ℎ(𝑥) with subgaussian tails (just as in the standard convex bandit
problem). We formalise this with the following assumption:
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Assumption 9.6 The learner can sample from a probability measure 𝜌 on 𝐾
and ℎ : 𝐾 → (−∞, 1] is a function such that∫

𝐾

ℎ(𝑥) d𝜌(𝑥) ≥ 0 .

For any 𝑥 ∈ 𝐾 the learner can sample from 𝒦(·|𝑥) where 𝒦 is a probability
kernel from 𝐾 to R such that for all 𝑥 ∈ 𝐾

(1) the mean of 𝒦(·|𝑥) is ℎ(𝑥); and
(2) the probability measure 𝒦(·|𝑥) is 𝜎-subgaussian:∫

R
exp((𝑦/𝜎)2)𝒦(d𝑦 |𝑥) ≤ 2 .

There is no geometry in this problem. The function ℎ needs to be measurable
but besides this there is no requirement for continuity or any other structural
properties beyond the semi-boundedness. Of course, in such circumstances
there is no hope whatsoever to actually maximise ℎ: for example, when it is the
indicator function of some singleton and 𝜌 is continuous. What can be achieved
depends on the law of ℎ(𝑋) when 𝑋 has law 𝜌. Since we have assumed that
E[ℎ(𝑋)] ≥ 0, it seems reasonable that we can find a point 𝑥 such that ℎ(𝑥)
is close to 0. Given an 𝜀 ∈ (0, 1) and 𝛿 ∈ (0, 1), we construct an algorithm
that with probability at least 1 − 𝛿 returns an 𝑥 such that ℎ(𝑥) ≥ −𝜀 and in
expectation takes at most

𝑂

(
𝜎2 log(1/𝛿)

𝜀2

)
samples from the probability kernel 𝒦.

Remark 9.7 The expected number of times Algorithm 9.1 samples from 𝜌 is
𝑂 (1/𝜀). In our application, samples from 𝒦(·|𝑥) correspond to querying the
loss function while 𝜌 is an explicit distribution on 𝐾 that is easy to sample from.

The basic idea is to sequentially sample points 𝑥 from 𝜌 and then take samples
from 𝒦(·|𝑥) to test whether or not ℎ(𝑥) is suitably large. The big question is
how many samples to take from 𝒦(·|𝑥). And in fact the algorithm will vary
the number of samples it takes for reasons we now explain. Remember we
assumed that E[ℎ(𝑋)] ≥ 0. There are multiple ways this can happen. Here are
two extreme examples:

◦ ℎ(𝑋) = 2𝜀 with probability 1/2 and ℎ(𝑋) = −2𝜀 otherwise.
◦ ℎ(𝑋) = 1 with probability 2𝜀/(1 + 2𝜀) and ℎ(𝑋) = −2𝜀 otherwise.
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And of course there are many intermediate options and mixtures. Suppose we
want to design an algorithm that finds an 𝑥 with ℎ(𝑥) ≥ −𝜀 for distributions
of the first kind. Then we should repeatedly sample points 𝑥 from 𝜌 and
then query 𝒦(·|𝑥) roughly 𝑂̃ (𝜎2/𝜀2) times until we can statistically prove
that ℎ(𝑥) is large enough. Since by assumption ℎ(𝑋) ≥ −𝜀 with constant
probability, in expectation this requires only 𝑂̃ (𝜎2/𝜀2) queries. On the other
hand, for distributions of the second kind the algorithm needs in expectation
𝑂 (1/𝜀) queries to 𝜌 to find an 𝑥 with ℎ(𝑥) = 1. But to identify when this
has happened only requires 𝑂̃ (𝜎2) queries to 𝒦(·|𝑥) because the margin is
large. Algorithm 9.1 below essentially dovetails these two algorithms and all
intermediaries on a carefully chosen grid. Concretely, the inner loop samples
𝑂 (1/𝜀) points from 𝜌 and queries the kernel with sample sizes ranging from
𝑂̃ (𝜎2/𝜀2) to 𝑂̃ (𝜎2). We will prove that with constant probability this inner
loop succeeds in identifying an 𝑥 such that ℎ(𝑥) ≥ −𝜀. The outer loop simply
repeats the inner loop to boost the probability of success. The quantity 𝑏𝑚,𝑘 is
chosen so that

∑∞
𝑘=1

∑∞
𝑚=1 𝑏

−1
𝑚,𝑘

= 1 and scales the confidence level to permit a
union bound over all 𝑚, 𝑘 .

1 def inf (𝜀 ∈ (0, 1) , 𝛿 ∈ (0, 1) , 𝜌 , 𝒦 )
2 f o r 𝑚 = 1 to ∞ :
3 f o r 𝑘 = 1 to 𝑘max ≜ 2 +

⌊ 2
𝜀

⌋
:

4 𝑏𝑚,𝑘 = [𝑘 (𝑘 + 1)] [𝑚(𝑚 + 1)]

5 𝑛𝑚,𝑘 =

⌈
64𝜎2 log(2𝑏𝑚,𝑘/𝛿)

𝜀2𝑘2

⌉
and 𝐶𝑚,𝑘 = 2𝜎

√︂
log(2𝑏𝑚,𝑘/𝛿)

𝑛𝑚,𝑘

6 sample 𝑥𝑚,𝑘 from 𝜌

7 sample 𝐻1, . . . , 𝐻𝑛𝑚,𝑘 from 𝒦(·|𝑥𝑚,𝑘)
8 compute ℎ̂(𝑥𝑚,𝑘) = 1

𝑛𝑚,𝑘

∑𝑛𝑚,𝑘
𝑡=1 𝐻𝑡

9 i f ℎ̂(𝑥𝑚,𝑘) − 𝐶𝑚,𝑘 ≥ −𝜀 : re turn 𝑥𝑚,𝑘

Algorithm 9.1: Infinite-armed bandit algorithm

Theorem 9.8 Suppose that Algorithm 9.1 is run with inputs 𝜀 ∈ (0, 1),
𝛿 ∈ (0, 1) and probability measure 𝜌 and 𝒦 satisfying Assumption 9.6. Then
the following hold:

(1) In expectation Algorithm 9.1 takes at most 𝑂
(
𝜎2 log(1/𝛿 )

𝜀2

)
samples from

the probability kernel 𝒦.
(2) With probability at least 1 − 𝛿 Algorithm 9.1 returns an 𝑥 such that
ℎ(𝑥) ≥ −𝜀.
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Proof ( ) We proceed in two steps.

Step 1: Setup, concentration and correctness Let P𝑚 be the probability
measure obtained by conditioning on all data obtained during the first 𝑚 outer
loops and 𝐺𝑚 be the event defined by

𝐺𝑚 =

𝑘max⋂
𝑘=1

{���̂ℎ(𝑥𝑚,𝑘) − ℎ(𝑥𝑚,𝑘)��� ≤ 𝐶𝑚,𝑘}
and 𝐺 = ∩∞

𝑚=1𝐺𝑚, which are events that certain estimates lie close to the truth.
We also define an event that holds in outer iteration 𝑚 when the algorithm
samples a point 𝑥𝑚,𝑘 with suitably large ℎ(𝑥𝑚,𝑘), which is defined in terms of
its complement by

𝑉𝑐𝑚 =

𝑘max⋂
𝑘=1

{
ℎ(𝑥𝑚,𝑘) <

(𝑘 − 2)𝜀
2

}
.

Note that (𝑥𝑚,𝑘)𝑚,𝑘 are independent and identically distributed samples from 𝜌.
A union bound combined with Theorem B.16 shows that P(𝐺) ≥ 1 − 𝛿. The
same argument and naive simplification shows that

P𝑚−1 (𝐺𝑚) ≥ 1/2 . (9.1)

Suppose the algorithm halts and 𝐺 holds. Then

ℎ(𝑥𝑘,𝑚) ≥ ℎ̂(𝑥𝑚,𝑘) − 𝐶𝑚,𝑘 ≥ −𝜀 ,

which, since P(𝐺) ≥ 1 − 𝛿, establishes correctness (part (2)).

Step 2: Bounding stopping time Let 𝑀 be the smallest 𝑚 such that the
algorithm halts:

𝑀 = min
{
𝑚 : max

1≤𝑘≤𝑘max

(
ℎ̂(𝑥𝑚,𝑘) − 𝐶𝑚,𝑘

)
≥ −𝜀

}
.

Suppose that 𝑉𝑚 and 𝐺𝑚 both hold, then there exists a 𝑘 ∈ {1, . . . , 𝑘max} such
that

ℎ̂(𝑥𝑚,𝑘) − 𝐶𝑚,𝑘 ≥ ℎ(𝑥𝑚,𝑘) − 2𝐶𝑚,𝑘 ≥
(𝑘 − 2)𝜀

2
− 2𝐶𝑚,𝑘 ≥ −𝜀 ,
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which by construction means the algorithm halts and consequentially 𝑀 ≤ 𝑚.
Suppose 𝑋 has law 𝜌. Then

P𝑚−1 (𝑉𝑐𝑚) = P

(
𝑘max⋂
𝑘=1

{
ℎ(𝑥𝑚,𝑘) <

(𝑘 − 2)𝜀
2

})
=

∞∏
𝑘=1

P
(
ℎ(𝑋) < (𝑘 − 2)𝜀

2

)
= exp

( ∞∑︁
𝑘=1

log
[
1 − P

(
ℎ(𝑋) ≥ (𝑘 − 2)𝜀

2

)])
≤ exp

(
−

∞∑︁
𝑘=1

P
(
ℎ(𝑋) ≥ (𝑘 − 2)𝜀

2

))
≤ exp (−1) ,

where for the second last inequality we used the fact that log(1 + 𝑥) ≤ 𝑥 for all
𝑥. The final inequality follows because

𝜀 ≤ E[ℎ(𝑋) + 𝜀]

≤
∫ ∞

0
P(ℎ(𝑋) ≥ 𝑡 − 𝜀) d𝑡

≤ 𝜀

2
+ 𝜀

2

∞∑︁
𝑘=1

P
(
ℎ(𝑋) ≥ (𝑘 − 2)𝜀

2

)
,

where the first inequality holds because E[ℎ(𝑋)] ≥ 0 and the last by by
comparing the integral to the sum (Figure 9.3). Hence, P𝑚−1 (𝑉𝑐𝑚) ≤ exp(−1)
and by the definitions, a union bound and (9.1),

1(𝑀 ≥ 𝑚)P𝑚−1 (𝑀 > 𝑚) ≤ P𝑚−1 (𝑉𝑐𝑚) + P𝑚−1 (𝐺𝑐𝑚) ≤ exp (−1) + 1
2
≤ 9

10
.

Therefore P(𝑀 > 𝑚) ≤ (9/10)𝑚 by induction. Part (1) follows because

𝑘max∑︁
𝑘=1

𝑛𝑚,𝑘 = 𝑂

(
𝜎2 log(𝑚/𝛿)

𝜀2

)
and

∑∞
𝑚=1 (9/10)𝑚−1 log(𝑚/𝛿) = 𝑂 (log(1/𝛿)). □
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0

1

𝜀/2 𝜀 3𝜀/2 2𝜀 5𝜀/2

Area = 𝜀
2

Area = 𝜀
2 P

(
ℎ(𝑋) ≥ − 𝜀

2
)

P(ℎ(𝑋) ≥ 𝑡 − 𝜀)

Figure 9.3: Integral approximation in the proof of Theorem 9.8.

9.3 Best arm identification

The methods proposed in Sections 9.5 and 9.6 effectively return a short list
of candidates for near-minimisers. We need a simple subroutine to identify a
near-minimiser from this list.

1 def bai (𝜀, 𝛿, 𝑥1, . . . , 𝑥𝑚 )
2 𝑛 =

⌈
16 log(𝑚/𝛿 )

𝜀2

⌉
3 f o r 𝑘 = 1 to 𝑚 :
4 sample 𝑌1 ∼ 𝑓 (𝑥𝑘), . . . , 𝑌𝑛 ∼ 𝑓 (𝑥𝑘)
5 compute 𝑓̂ (𝑥𝑘) = 1

𝑛

∑𝑛
𝑡=1𝑌𝑡

6 re turn arg min{ 𝑓̂ (𝑥) : 𝑥 ∈ 𝑥1, . . . , 𝑥𝑚}

Algorithm 9.2: Best arm identification

Theorem 9.9 With probability at least 1 − 𝛿, Algorithm 9.2 returns an
𝑥 ∈ {𝑥1, . . . , 𝑥𝑚} such that

𝑓 (𝑥) ≤ min
𝑦∈{𝑥1 ,...,𝑥𝑚 }

𝑓 (𝑦) + 𝜀 .

Furthermore, it queries the loss function 𝑓 at most 𝑚
⌈
16 log(𝑚/𝛿)/𝜀2⌉ times.

Proof By Theorem B.16 and a union bound, with probability at least 1 − 𝛽,

| 𝑓̂ (𝑥𝑘) − 𝑓 (𝑥𝑘) | ≤
𝜀

2
for all 1 ≤ 𝑘 ≤ 𝑚 .
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Therefore, for the 𝑥 returned by the algorithm and any 𝑦 ∈ {𝑥1, . . . , 𝑥𝑚},

𝑓 (𝑥) ≤ 𝑓̂ (𝑥) + 𝜀

2
≤ 𝑓̂ (𝑦) + 𝜀

2
≤ 𝑓 (𝑦) + 𝜀 . □

9.4 Finding a cutting plane

Let 𝑓 ∈ ℱb with 𝑓★ = inf𝑥∈𝐾 𝑓 (𝑥). All cutting plane methods abstract away
the construction of the half-space. The methods assume a process that given a
‘center’ 𝑥 of a convex set 𝐾 return a half-space 𝐻 such that at least one of the
following holds:

◦ 𝑥 is close to 𝜕𝐻 and 𝐻 contains all near-minimisers of the loss function.
◦ 𝑥 is a near-minimiser of the loss function.

When the learner has gradient access to the loss function 𝑓 , then the half-space
𝐻 = 𝐻 (𝑥, 𝑓 ′ (𝑥)) ≜ {𝑦 ∈ R𝑑 : ⟨ 𝑓 ′ (𝑥), 𝑦 − 𝑥⟩ ≤ 0} satisfies the conditions.
To see why, suppose that 𝑓 (𝑦) ≤ 𝑓 (𝑥). Then by convexity 𝑓 (𝑦) ≥ 𝑓 (𝑥) +
⟨ 𝑓 ′ (𝑥), 𝑦 − 𝑥⟩ ≥ 𝑓 (𝑦) + ⟨ 𝑓 ′ (𝑥), 𝑦 − 𝑥⟩, which implies that 𝑦 ∈ 𝐻. Hence, either
𝑓 (𝑥) ≤ 𝑓★ + 𝜀 and 𝑥 is a near-minimiser or 𝑓 (𝑥) ≥ 𝑓★ + 𝜀 and any 𝑦 with
𝑓 (𝑦) ≤ 𝑓★ + 𝜀 is in 𝐻.

In the bandit setting we do not have access to the gradient, so another
procedure is needed to find 𝐻. Furthermore, the condition that 𝐻 contains all
near-minimisers of the loss function will be relaxed to require that any specific
near-minimiser is in 𝐻 with high probability. We have been a bit vague about
how close 𝑥 needs to be to the half-space. This depends on which cutting plane
method is used but fortunately can be abstracted away in the analysis of each
method by using a change of coordinates. Concretely, it suffices to make the
following assumption:

Assumption 9.10 𝐾 is a convex body such that B𝑑1 ⊂ 𝐾 ⊂ B𝑑𝑟 for some 𝑟 > 1.

The ‘center’ is now taken to be 0. The mission in this section is to design a
randomised algorithm that queries the loss function as few times as possible
and returns a half-space 𝐻 such that

◦ The boundary of the half-space intersects B𝑑1 : 𝜕𝐻 ∩ B𝑑1 ≠ ∅.
◦ P(𝑦 ∈ 𝐻) ≥ 1 − 𝛿 for any 𝑦 ∈ 𝐾 with 𝑓 (𝑦) ≤ 𝑓 (0) − 𝜀.

(9.2)

Remark 9.11 The second item above implies that either 𝑓 (0) ≤ 𝑓★ + 2𝜀 or
for any 𝑦 with 𝑓 (𝑦) ≤ 𝑓★ + 𝜀, P(𝑦 ∈ 𝐻) ≥ 1 − 𝛿.
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Approach A natural idea is to try and use the gradient of a smoothed surrogate.
Let𝑈 have law U (B𝑑1 ) and

𝑠(𝑥) = E[2 𝑓 (𝑈/4 + 𝑥/2) − 𝑓 (𝑈/2)] , (9.3)

which is the same surrogate that appeared in Chapter 6. We saw there that 𝑠 is
differentiable, convex and optimistic: 𝑠(𝑥) ≤ 𝑓 (𝑥) for all 𝑥. Generally speaking
the half-space 𝐻 = {𝑦 : ⟨𝑠′ (𝑥), 𝑦 − 𝑥⟩ ≤ 0} need not contain the minimisers of
𝑓 . But when 𝑠(𝑥) is sufficiently large, then 𝐻 does contain near-minimisers of
𝑓 .

Lemma 9.12 Let 𝐻 = 𝐻 (𝑥, 𝑠′ (𝑥)). Then 𝑦 ∈ 𝐻 for all 𝑦 with 𝑓 (𝑦) ≤ 𝑠(𝑥).

Proof Suppose that 𝑓 (𝑦) ≤ 𝑠(𝑥). Then, by convexity of 𝑠,

𝑓 (𝑦) ≥ 𝑠(𝑦) ≥ 𝑠(𝑥) + ⟨𝑠′ (𝑥), 𝑦 − 𝑥⟩ ≥ 𝑓 (𝑦) + ⟨𝑠′ (𝑥), 𝑦 − 𝑥⟩ ,

where in the first inequality we used the fact that 𝑠 ≤ 𝑓 is optimistic (Lemma 6.9).
The second follows from convexity of 𝑠 and the third by the assumption that
𝑠(𝑥) ≥ 𝑓 (𝑦). Rearranging shows that ⟨𝑠′ (𝑥), 𝑦−𝑥⟩ ≤ 0 and therefore 𝑦 ∈ 𝐻. □

Lemma 9.12 suggests a simple plan:

◦ Find an 𝑥 ∈ B𝑑1 such that 𝑠(𝑥) is nearly as large as 𝑓 (0).
◦ Find an estimate 𝑠′ (𝑥) of the gradient of 𝑠 at 𝑥.
◦ Propose the half-space 𝐻 (𝑥, 𝑠′ (𝑥)).

But why should there exists a point 𝑥 ∈ B𝑑1 where 𝑠(𝑥) is large?

Lemma 9.13 Suppose that 𝑈,𝑉 are independent random vectors with law
U (B𝑑1 ) and ℎ(𝑥) = 𝑠(𝑥) − 𝑓 (0). Then E[ℎ(𝑉)] ≥ 0.

Proof By convexity of 𝑓 ,

E[𝑠(𝑉)] = E[2 𝑓 (𝑉/2 +𝑈/4) − 𝑓 (𝑈/2)]
≥ E[2 𝑓 (𝑉/2) − 𝑓 (𝑈/2)] Jensen’s inequality

= E[ 𝑓 (𝑈/2)] 𝑉
𝑑
= 𝑈

≥ 𝑓 (0) . Jensen’s inequality

Rearranging completes the proof. □

Since the maximum is larger than the expectation, Lemma 9.13 shows there
exists a 𝑥 ∈ B𝑑1 such that 𝑠(𝑥) ≥ 𝑓 (0). Moreover, a point nearly satisfying this
can be found using Algorithm 9.1 as we now explain. To implement this plan
we need an oracle that can provide estimates of ℎ(𝑥) = 𝑠(𝑥) − E[ 𝑓 (𝑈/2)] for
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any 𝑥 ∈ B𝑑1 . And at the same time we provide an estimator for the gradients of 𝑠,
which is

𝑠′ (𝑥) = 4𝑑
vol(S𝑑−1

1 )

∫
S𝑑−1

1

𝑓 (𝑥/2 + 𝑢/4)𝑢 d𝑢 .

1 def 𝒦 ( 𝑥 )
2 sample 𝑈1,𝑈2 from U (B𝑑1 )
3 l e t 𝑋1 = 𝑈1/4 + 𝑥/2 and o b s e r v e 𝑌1 ∼ 𝑓 (𝑋1)
4 l e t 𝑋2 = 𝑈2/2 and o b s e r v e 𝑌2 ∼ 𝑓 (𝑋2)
5 l e t 𝑋3 = 0 and o b s e r v e 𝑌3 ∼ 𝑓 (𝑋3)
6 re turn 2𝑌1 − 𝑌2 − 𝑌3

Algorithm 9.3: Returns an unbiased estimate of ℎ(𝑥) = 𝑠(𝑥) − 𝑓 (0).

The following simple lemma shows that Algorithm 9.3 returns an unbiased
estimate of 𝑠(𝑥) − 𝑓 (0) that is also subgaussian:

Lemma 9.14 Suppose that Algorithm 9.3 is run with input 𝑥 ∈ B𝑑3/2 and has
output 𝑌 . Then E[𝑌 ] = 𝑠(𝑥) − 𝑓 (0) and ∥𝑌 − E[𝑌 ] ∥𝜓2 ≤ 4.

Proof That E[𝑌 ] = 𝑠(𝑥) − 𝑓 (0) is immediate from the definition of the
surrogate ((9.3)) and the construction of the algorithm. The bound on the Orlicz
norm follows from the triangle inequality for Orlicz norms (Fact 1) and because
the noise is subgaussian (Assumption 1.4). □

1 def estimate-gradient (𝜀, 𝛿, 𝑥 ) :
2 𝑛 =

6400𝑑 log(2/𝛿 )
𝜀2

3 f o r 𝑡 = 1 to 𝑛 :
4 sample 𝑈𝑡 from U (S𝑑−1

1 ) and 𝑋𝑡 =
𝑥
2 + 𝑈𝑡

4
5 l e t 𝑌𝑡 ∼ 𝑓 (𝑋𝑡 )
6 𝑠′ (𝑥) ≜ 4𝑑

𝑛

∑𝑛
𝑡=1𝑈𝑡𝑌𝑡

7 re turn 𝑠′ (𝑥)

Algorithm 9.4: Returns an unbiased estimate of 𝑠′ (𝑥).

Algorithm 9.4 returns an estimate of the gradient of 𝑠′ (𝑥). The following
lemma provides a high-probability bound on the quality of this estimate.
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Lemma 9.15 Suppose that 𝑠′ (𝑥) is the output of Algorithm 9.4 given input
𝑥 ∈ B𝑑3/2 and 𝜂 ∈ S𝑑−1

1 . Then, with probability at least 1 − 𝛿,

|⟨𝑠′ (𝑥) − 𝑠′ (𝑥), 𝜂⟩| ≤ 𝜀 .

Proof Since𝑌𝑡 = 𝑓 (𝑋𝑡 ) + 𝜀𝑡 where ∥𝜀𝑡 ∥𝜓2 ≤ 1 it follows from the assumption
that 𝑓 ∈ ℱb and the triangle inequality for the norm ∥·∥𝜓2 (Fact 1) and
Lemma B.2 that

∥𝑌𝑡 ∥𝜓2 ≤ ∥𝜀𝑡 ∥𝜓2 + ∥ 𝑓 (𝑋𝑡 )∥𝜓2 ≤ 1 + 1√︁
log(2)

.

Combining this with Proposition B.11 and B.13 shows that

∥⟨𝑈𝑡 , 𝜂⟩𝑌𝑡 ∥𝜓1 ≤ ∥⟨𝑈𝑡 , 𝜂⟩∥𝜓2 ∥𝑌𝑡 ∥𝜓2 ≤ ∥𝜂∥
√︂

3
𝑑 + 1

(
1 + 1√︁

log(2)

)
≤ 4

√
𝑑 + 1

.

Let 𝑍𝑡 = ⟨4𝑑𝑈𝑡𝑌𝑡 − 𝑠′ (𝑥), 𝜂⟩. The random variables 𝑍1, . . . , 𝑍𝑛 are independent
and E[𝑍𝑡 ] = 0 for all 1 ≤ 𝑡 ≤ 𝑛 because 4𝑑𝑈𝑡𝑌𝑡 is an unbiased estimator of
𝑠′ (𝑥). By the above display and the fact that E[4𝑑𝑈𝑡𝑌𝑡 ] = 𝑠′𝑡 (𝑥),

∥𝑍𝑡 ∥𝜓1 = ∥⟨4𝑑𝑈𝑡𝑌𝑡 , 𝜂⟩ − E[⟨4𝑑𝑈𝑡𝑌𝑡 , 𝜂⟩]∥𝜓1

≤
(
1 + 1

log(2)

)
∥4𝑑⟨𝑈𝑡 , 𝜂⟩𝑌𝑡 ∥𝜓1 Lemma B.6

= 4𝑑
(
1 + 1

log(2)

)
∥⟨𝑈𝑡 , 𝜂⟩𝑌𝑡 ∥𝜓1 Fact 1

≤ 40
√
𝑑 .

Therefore, by Bernstein’s inequality (Theorem B.17) with probability at least
1 − 𝛿,

|⟨𝑠′ (𝑥) − 𝑠′ (𝑥), 𝜂⟩| =
�����1𝑛 𝑛∑︁

𝑡=1
𝑍𝑡

�����
≤ 40

√
𝑑max

(√︂
4 log(2/𝛿)

𝑛
,

2 log(2/𝛿)
𝑛

)
≤ 𝜀 ,

where the last inequality follows from the definition of 𝑛. □

At last we are in a position to use Algorithm 9.1 to find a suitable point to cut
and Algorithm 9.4 to estimate the gradient of the surrogate loss.
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1 def cut ( 𝑓 , 𝜀, 𝛿, 𝑟 ) :
2 l e t 𝜌 be t h e un i fo rm measure on B𝑑1
3 𝑥 = inf( 𝜀2 ,

𝛿
2 , 𝜌,𝒦) # Algorithm 9.1

4 𝑔 = estimate-gradient( 𝜀2𝑟 ,
𝛿
2 , 𝑥) # Algorithm 9.4

5 re turn 𝐻 (𝑥, 𝑔)

Algorithm 9.5: Algorithm for finding a halfspace satisfying (9.2) under As-
sumption 9.10

Theorem 9.16 Suppose that 𝑓 (𝑦) ≤ 𝑓 (0) − 𝜀. The following hold:

(1) With probability at least 1 − 𝛿 Algorithm 9.5 returns a half-space 𝐻 with
𝑦 ∈ 𝐻 and 𝜕𝐻 ∩ B𝑑1 ≠ ∅.

(2) In expectation Algorithm 9.5 makes at most 𝑂
(
𝑑𝑟2 log(1/𝛿 )

𝜀2

)
queries to the

loss function.

Proof Recall that ℎ(𝑥) = 𝑠(𝑥) − 𝑓 (0). By Lemma 9.13,∫
B𝑑1

ℎ(𝑥) d𝜌(𝑥) ≥ 0 .

Moreover, Lemma 9.14 shows that Algorithm 9.3 supplies the kind of stochastic
oracle for ℎ needed by Algorithm 9.1. Hence, by Theorem 9.8 ,with probability
at least 1−𝛿/2, the call to Algorithm 9.1 returns an 𝑥 ∈ B𝑑1 such that ℎ(𝑥) ≥ − 𝜀

2 ,
which implies that 𝑠(𝑥) − 𝑓 (0) ≥ − 𝜀

2 . By assumption 𝑓 (0) ≥ 𝑓 (𝑦) + 𝜀.
Combining this with a union bound and Lemma 9.15 shows that with probability
at least 1 − 𝛿

𝑓 (𝑦) ≥ 𝑠(𝑦)
≥ 𝑠(𝑥) + ⟨𝑠′ (𝑥), 𝑦 − 𝑥⟩

≥ 𝑓 (0) − 𝜀

2
+ ⟨𝑠′ (𝑥), 𝑦 − 𝑥⟩

≥ 𝑓 (𝑦) + 𝜀

2
+ ⟨𝑠′ (𝑥), 𝑦 − 𝑥⟩

≥ 𝑓 (𝑦) + ⟨𝑠′ (𝑥), 𝑦 − 𝑥⟩ .

Therefore ⟨𝑠(𝑥), 𝑦 − 𝑥⟩ ≤ 0, which shows that 𝑦 ∈ 𝐻 as required. Since 𝑥 ∈ B𝑑1
and 𝑥 ∈ 𝜕𝐻 (𝑥, 𝑠′ (𝑥)) it follows trivially that 𝜕𝐻 ∩ B𝑑1 ≠ ∅. The bound on
the number of queries follows from Theorem 9.8 and the construction of
Algorithm 9.4. □
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9.5 Center of gravity method

Let 𝐾 ⊂ R𝑑 be a convex body and 𝐻 be a half-space. We are interested in the
conditions on 𝐻 and 𝐾 such that vol(𝐾 ∩ 𝐻) ≤ 𝛾 vol(𝐾) for some constant 𝛾.
Grünbaum’s inequality provides such a result for half-spaces 𝐻 passing through
the center of mass:

Theorem 9.17 (Grünbaum 1960) Let 𝐾 be a convex body and
𝑦 = 1

vol(𝐾 )
∫
𝐾
𝑥 d𝑥 and 𝐻 = 𝐻 (𝑦, 𝜂) for any direction 𝜂 ≠ 0. Then

vol(𝐾 ∩ 𝐻)
vol(𝐾) ≤

(
𝑑

𝑑 + 1

)𝑑
≤ 1 − 1

𝑒
.

Remember that a convex body 𝐾 is in isotropic position if
∫
𝐾
𝑥 d𝑥 = 0 and∫

𝐾
𝑥𝑥⊤ d𝑥 = 1.

Theorem 9.18 (Bertsimas and Vempala 2004) Let 𝐾 be a convex body in
isotropic position and 𝐻 = {𝑥 : ⟨𝑥 − 𝑦, 𝜂⟩} for unit vector 𝜂. Then

vol(𝐾 ∩ 𝐻)
vol(𝐾) ≤ 1 + ∥𝑦∥ − 1

𝑒
.

By Theorem 3.16, when 𝐾 is isotropic, then B𝑑1 ⊂ 𝐾 ⊂ B𝑑1+𝑑 and this is
more-or-less tight for the simplex in isotropic position. Theorem 9.18 shows that
cutting 𝐾 anywhere inside B𝑑1/(2𝑒) ⊂ 𝐾 will divide the set into two nearly equal
pieces. Given a convex body 𝐾 recall from p 31 that iso𝐾 : R𝑑 → R𝑑 is the
affine map such that iso𝐾 (𝐾) is isotropic. Note that iso𝐾 is generally non-trivial
to compute exactly, but can be approximated with reasonable precision using
sampling as explained in Section 3.6. Theorem 9.18 can be combined with
Algorithm 9.5 to obtain a simple algorithm for bandit convex optimisation with
near-optimal sample complexity guarantees. To keep things simple we assume
exact computation in the following and ask you handle the approximation errors
in Exercise 9.28.
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1 args : 𝜀 ∈ (0, 1) , 𝛿 ∈ (0, 1)

2 𝑘max = 1 +
⌈
log

(
(𝜀/2)𝑑

𝑑! vol(B𝑑
𝑑
)

) /
log(1 − 1/(2𝑒))

⌉
3 𝐾1 = 𝐾

4 f o r 𝑘 = 1 to 𝑘max :
5 𝑇𝑘 = (2𝑒) iso𝐾𝑘 and 𝑓𝑘 = 𝑓 ◦ 𝑇−1

𝑘
and 𝑥𝑘 = 𝑇

−1
𝑘

(0)
6 𝐻𝑘 = cut( 𝑓𝑘 , 𝜀4 ,

𝛿
2(𝑑+1)𝑘max

, 4𝑒𝑑) # Algorithm 9.5

7 u p d a t e 𝐾𝑘+1 = 𝐾𝑘 ∩ 𝑇−1
𝑘

(𝐻𝑘)
8 re turn bai( 𝜀2 ,

𝛿
2 , 𝑥1, . . . , 𝑥𝑘max ) # Algorithm 9.2

Algorithm 9.6

Remark 9.19 You might wonder if the final call to bai is necessary. Maybe the
algorithm should simply return 𝑥𝑘max . This does not work. There is no particular
reason to expect that 𝑘 ↦→ 𝑓 (𝑥𝑘) should be decreasing. Indeed, 𝑥1 could by
chance be the minimiser of 𝑓 .

Theorem 9.20 Under Assumption 9.1 the following hold:

(1) With probability at least 1 − 𝛿 Algorithm 9.6 outputs an 𝑥 such that
𝑓 (𝑥) ≤ inf𝑦∈𝐾 𝑓 (𝑦) + 𝜀.
(2) The expected number of queries to the loss function made by Algorithm 9.6
is at most

𝑂

(
𝑑4

𝜀2 log
(
𝑑

𝜀

)
log

(
𝑑 log(1/𝜀)

𝛿

))
.

Proof Let 𝑓★ = inf𝑥∈𝐾 𝑓 (𝑥). We establish the claim in three steps, beginning
with a proof that with high probability the algorithm indeed returns a point that
is near-optimal. The second step proves the key lemma used in the first. The last
step bounds the sample complexity.

Step 1: Correctness Suppose that

P
(
min{ 𝑓 (𝑥𝑘) : 1 ≤ 𝑘 ≤ 𝑘max} ≤ 𝑓★ + 𝜀

2

)
≥ 1 − 𝛿

2
. (9.4)

By construction the algorithm returns bai( 𝜀2 ,
𝛿
2 , 𝑥1, . . . , 𝑥𝑘max ) and by Theo-

rem 9.9, this subroutine returns an 𝑥 ∈ {𝑥1, . . . , 𝑥𝑘} such that

P
(
𝑓 (𝑥) ≤ min

1≤𝑘≤𝑘max
𝑓 (𝑥𝑘) +

𝜀

2

)
≥ 1 − 𝛿

2
.
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A union bound combining the above display and (9.4) shows that with probability
at least 1 − 𝛿 the algorithm returns an 𝑥 such that 𝑓 (𝑥) ≤ 𝑓★ + 𝜀 as required.
The remainder of this step is devoted to establishing (9.4). Let 𝑆 ⊂ 𝐾 be the
simplex such that 𝑓 (𝑥) ≤ 𝑓★ + 𝜀/2 for all 𝑥 ∈ 𝑆 and

vol(𝑆) ≥
( 𝜀

4

)𝑑 vol(𝐾)
𝑑! vol(B𝑑

𝑑
)
, (9.5)

which exists by Lemma 9.3. We also let 𝑆𝑘 = 𝑇𝑘 (𝑆𝑘), which is a simplex in
𝐽𝑘 = 𝑇𝑘 (𝐾𝑘). We prove the following lemma in the next step:

Lemma 9.21 Suppose that 𝑆 ⊂ 𝐾𝑘 and 𝑓 (𝑥𝑘) > 𝑓★ + 𝜀/2. Then

P𝑘−1 (𝑆 ⊂ 𝐾𝑘+1) ≥ 1 − 𝛿

2𝑘max
.

where P𝑘−1 is the probability measured conditioned on all information available
at the end of iteration 𝑘 − 1.

By induction and a union bound over 1 ≤ 𝑘 ≤ 𝑘max and Lemma 9.21, with
probability at least 1 − 𝛿

2 at least one of the following holds:

(1) There exists a 1 ≤ 𝑘 ≤ 𝑘max such that 𝑓 (𝑥𝑘) ≤ 𝑓★ + 𝜀/2; or
(2) 𝑆 ⊂ 𝐾𝑘max+1.

In a moment we show that

vol(𝐾𝑘max+1) ≤
(
1 − 1

2𝑒

) 𝑘max

vol(𝐾) < vol(𝑆) ,

which contradicts (2) and therefore (1) occurs with probability at least 1 − 𝛿.
The second inequality in the above display follows from the definition of 𝑘max
and (9.5). For the first, by definition𝑇𝑘 = (2𝑒) iso𝐾𝑘 , which means that 1

2𝑒 𝐽𝑘 is in
isotropic position. Furthermore, by the definition of the algorithm 𝜕𝐻𝑘 ∩B𝑑1 ≠ ∅
and hence 1

2𝑒 𝜕𝐻𝑘 ∩ B𝑑1/2𝑒 ≠ ∅. Then

vol(𝐾𝑘+1)
vol(𝐾𝑘)

=
vol( 1

2𝑒 𝐽𝑘+1)
vol( 1

2𝑒 𝐽𝑘)
=

vol( 1
2𝑒 𝐽𝑘 ∩

1
2𝑒𝐻𝑘)

vol( 1
2𝑒 𝐽𝑘)

≤ 1 − 1
2𝑒
,

where the last inequality follows from Theorem 9.18.

Step 2: Proof of Lemma 9.21 Suppose that 𝑦 is a vertex of 𝑆𝑘 = 𝑇𝑘 (𝑆). Then
𝑓𝑘 (𝑦) ≤ 𝑓★ + 𝜀

4 and 𝑓𝑘 (0) > 𝑓★ + 𝜀
2 , which means that

𝑓𝑘 (𝑦) < 𝑓𝑘 (0) −
𝜀

4
.



134 Cutting plane methods

Hence, by Theorem 9.16,

P𝑘−1 (𝑦 ∈ 𝐻𝑘) ≥ 1 − 𝛿

2(𝑑 + 1)𝑘max
.

Since 𝐻𝑘 is convex, if all vertices of 𝑆𝑘 are in 𝐻𝑘 it follows that 𝑆𝑘 ⊂ 𝐻𝑘 .
Hence, a union bound over the 𝑑 + 1 vertices of 𝑆𝑘 combined with the above
display shows that

P𝑘−1 (𝑆𝑘 ⊂ 𝐻𝑘) ≥ 1 − 𝛿

2𝑘max
.

Therefore

P𝑘−1 (𝑆 ⊂ 𝐾𝑘+1) = P𝑘−1

(
𝑆 ⊂ 𝐾𝑘 ∩ 𝑇−1

𝑘 (𝐻𝑘)
)

Definition of 𝐾𝑘+1

= P𝑘−1

(
𝑆 ⊂ 𝑇−1

𝑘 (𝐻𝑘)
)

Since 𝑆 ⊂ 𝐾𝑘

= P𝑘−1 (𝑆𝑘 ⊂ 𝐻𝑘) Since 𝑇𝑘 is invertible

≥ 1 − 𝛿

2𝑘max

as required.

Step 3: Sample complexity There are 𝑘max iterations and

𝑘max = Θ (𝑑 log(𝑑/𝜀)) .

The algorithm makes 𝑘max calls to cut with radius bound 𝑟 = 4𝑒𝑑, precision 𝜀
2

and confidence 𝛿 with

𝛿 =
𝛿

2(𝑑 + 1)𝑘max

By Theorem 9.16, the expected number of queries of the loss used by each call
to cut is

𝑂

(
𝑑𝑟2 log(1/𝛿)

𝜀2

)
= 𝑂

(
𝑑3

𝜀2 log
(
𝑑𝑘max
𝛿

))
.

Therefore the total number of queries to the loss function used by all calls to
cut is bounded in expectation by

𝑂

(
𝑑3𝑘max

𝜀2 log
(
𝑑𝑘max
𝛿

))
= 𝑂

(
𝑑4

𝜀2 log
(
𝑑 log(𝑑/𝜀)

𝛿

)
log

(
𝑑

𝜀

))
.

Finally, the call to bai uses just

𝑂

(
𝑘max

𝜀2 log
(

1
𝛿

))
queries. The result follows by combining the previous two displays. □
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The main problem with the center of gravity method is the need to find
the affine maps 𝑇𝑘 . As we discussed in Section 3.6, when 𝐾 has a reasonable
representation this can be done approximately by sampling. But this is a heavy
procedure that one would like to avoid.

9.6 Method of the inscribed ellipsoid

When 𝐾 is a polytope, the method of the inscribed ellipsoid provides a more
computationally efficient cutting plane mechanism than the center of gravity
method. Given a convex body 𝐾 ⊂ R𝑑 , let mvie(𝐾) be the ellipsoid of largest
volume contained in 𝐾, which is unique. Furthermore, we have the following
analogue of Grünbaum’s inequality:

Proposition 9.22 (Khachiyan 1990) Let 𝐾 be a convex body and 𝐸 = mvie(𝐾)
and 𝐻 be a half-space with 𝜕𝐻 intersecting the center of 𝐸 . Then mvie(𝐾∩𝐻) ≤
0.85 vol(𝐸).

The standard method of inscribed ellipsoids initialises 𝐾1 = 𝐾 and subse-
quently computes 𝐾𝑘+1 from 𝐾𝑘 as follows:

◦ Find 𝐸𝑘 = mvie(𝐾𝑘).
◦ Let 𝑥𝑘 be the center of 𝐸𝑘 and 𝐻𝑘 = 𝐻 (𝑥𝑘 , 𝑔𝑘) where 𝑔𝑘 ∈ 𝜕 𝑓 (𝑥𝑘).
◦ Update 𝐾𝑘+1 = 𝐾𝑘 ∩ 𝐻𝑘 .

Of course, this is only feasible with access to subgradients of the loss 𝑓 . We
will use Algorithm 9.5 to find 𝐻𝑘 instead, but for this we can only guarantee
that 𝜕𝐻𝑘 passes through a point close to 𝑥𝑘 and therefore need a refinement of
Proposition 9.22.

Proposition 9.23 Let 𝐾 be a convex body and 𝐸 = mvie(𝐾) and 𝐻 be a
half-space such that 𝜕𝐻 ∩ 𝐸 ( 1

2 ) ≠ ∅. Then mvie(𝐾 ∩ 𝐻) ≤ 0.93 vol(𝐸).

As far as we know this result is new, though our proof – deferred to Section 9.8
– follows that by Khachiyan (1990) in almost every detail.
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1 args : 𝜀 ∈ (0, 1) , 𝛿 ∈ (0, 1)

2 𝑘max = 1 +
⌈
log

(
(𝜀/4)𝑑

𝑑! vol(B𝑑
𝑑
)

) /
log(0.93)

⌉
3 𝐾1 = 𝐾

4 f o r 𝑘 = 1 to 𝑘max :
5 𝐸𝑘 = mvie(𝐾𝑘) = 𝐸 (𝑥𝑘 , 𝐴𝑘)
6 𝑇𝑘 (𝑥) = 2𝐴−1/2

𝑘
(𝑥 − 𝑥𝑘) and 𝑓𝑘 = 𝑓 ◦ 𝑇−1

𝑘

7 𝐻𝑘 = cut( 𝑓𝑘 , 𝜀4 ,
𝛿

2(𝑑+1)𝑘max
, 2𝑑) # Algorithm 9.5

8 u p d a t e 𝐾𝑘+1 = 𝐾𝑘 ∩ 𝑇−1
𝑘

(𝐻𝑘)
9 re turn bai( 𝜀2 ,

𝛿
2 , 𝑥1, . . . , 𝑥𝑘max ) # Algorithm 9.2

Algorithm 9.7: Method of the inscribed ellipsoid

Computation Finding the maximum volume enclosed ellipsoid is the most
computationally heavy part of Algorithm 9.7, but this only needs to be done
𝑂̃ (𝑑) cumulatively. Suppose that 𝑃 = {𝑥 : 𝐶𝑥 ≤ 𝑏} is a convex body with
𝐶 ∈ R𝑚×𝑑 . Since 𝑃 is a convex body, 𝑚 ≥ 𝑑 + 1. Khachiyan and Todd (1993)
show that mvie(𝑃) can be computed to extreme precision in 𝑂̃ (𝑚3.5) time. Their
algorithm is based on interior point methods. More generally, the problem is a
semi-definite program and is practically solvable using modern solvers (Boyd
and Vandenberghe, 2004, §8.4.2). The complexity per round is dominated by
evaluating the affine map in the definition of 𝑓𝑘 , which is 𝑂 (𝑑2).

Theorem 9.24 Under Assumption 9.1 the following hold:

(1) With probability at least 1 − 𝛿 Algorithm 9.7 outputs an 𝑥 such that
𝑓 (𝑥) ≤ inf𝑦∈𝐾 𝑓 (𝑦) + 𝜀.
(2) The expected number of queries to the loss function made by Algorithm 9.7
is at most

𝑂

(
𝑑4

𝜀2 log
(
𝑑

𝜀

)
log

(
𝑑 log(1/𝜀)

𝛿

))
.

Proof The argument is the same as the proof of Theorem 9.20. The only
difference is volume calculation. Recall that 𝑆 ⊂ 𝐾 is a simplex such that

vol(𝑆) ≥
( 𝜀

4

)𝑑 vol(𝐾)
𝑑! vol(B𝑑

𝑑
)
,
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which means that log(vol(𝑆)) = Ω (𝑑 log(𝑑/𝜀)). Then

log(vol(𝐾𝑘+1)) ≤ log(vol(𝐸𝑘+1 (𝑑)))
= 𝑑 log(𝑑) + log(vol(𝐸𝑘+1))
≤ 𝑑 log(𝑑) + log(vol(𝐸1)) − 𝑘 log(0.93)
≤ 𝑑 log(𝑑) + log(vol(𝐾)) − 𝑘 log(0.93) ,

where in the first inequality we used the fact that 𝐾𝑘+1 ⊂ 𝐸𝑘+1 (𝑑), which follows
from John’s theorem (Theorem 3.15). The second inequality follows from
Proposition 9.23 and the last since 𝐸1 ⊂ 𝐾 by definition. Hence vol(𝐾𝑘+1) ≤
vol(𝑆) once 𝑘 ≥ 𝑘max = Θ(𝑑 log(𝑑/𝜀)) iterations, just like for the center of
gravity method. □

9.7 Ellipsoid method

The ellipsoid method is an alternative cutting plane method that is statistically
less efficient than both the method of the inscribed ellipsoid and the center of
gravity method. The advantage is that it can be implemented using a separation
oracle only and relatively efficiently. Given a convex body 𝐾 let mvee(𝐾) be
the ellipsoid of minimum volume containing 𝐾 . The classical ellipsoid method
starts with an ellipsoid 𝐸1 containing 𝐾 .

◦ Let 𝑥𝑘 be the center of 𝐸𝑘 .
◦ Suppose that 𝑥𝑘 ∈ 𝐾 , then let𝐻𝑘 = {𝑥 : ⟨𝑥 − 𝑥𝑘 , 𝑔𝑘⟩ ≤ 0} with 𝑔𝑘 ∈ 𝜕 𝑓 (𝑥𝑘).

Otherwise let 𝐻𝑘 = 𝐻 (𝑥𝑘 , sep𝐾 (𝑥𝑘)).
◦ Let 𝐸𝑘+1 = mvee(𝐸𝑘 ∩ 𝐻𝑘).

We give the formula for 𝐸𝑘+1 as well as references for the following claims in
Note 9.vi. The beauty of the ellipsoid method is that there is a closed-form
expression for mvee(𝐸 ∩ 𝐻) when 𝐸 is an ellipsoid and 𝐻 is a half-space.
Furthermore, vol(𝐸𝑘+1) = 𝑂 (1 − 1/𝑑) vol(𝐸𝑘). By construction we have
𝐾𝑘 ⊂ 𝐸𝑘 . There is no need for 𝑥𝑘 to be the center of 𝐸𝑘 . In fact, when
𝑥𝑘 ∈ 𝐸𝑘 ( 1

2𝑑 ) it holds that vol(𝐸𝑘+1) ≤ (1 − 1
20𝑑 ) vol(𝐸𝑘). Based on this, one

might try to implement the ellipsoid method by letting 𝐸𝑘 = 𝐸 (𝑥𝑘 , 𝐴𝑘) and
𝑇𝑘 = 2𝑑𝐴−1/2

𝑘
(𝑥 − 𝑥𝑘) and 𝑓𝑘 = 𝑓 ◦ 𝑇−1

𝑘
, which are chosen so that

𝑇𝑘 (𝐸𝑘) = B𝑑2𝑑 and 𝑇𝑘 (𝐸𝑘 (1/(2𝑑))) = B𝑑1 .

We want to run Algorithm 9.5 on 𝑓𝑘 . The problem is that there is no reason why
𝐸𝑘 (1/(2𝑑)) ⊂ 𝐾 should hold. Equivalently, it can happen that B𝑑1 ⊄ dom( 𝑓𝑘).
There are two ways to remedy this.
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(1) There exists a modification of the ellipsoid method that guarantees
𝐸𝑘 (1/𝑟) ⊂ 𝐾𝑘 ⊂ 𝐸𝑘 with 𝑟 = 𝑂 (𝑑3/2). Then you can let 𝑇𝑘 = 𝑟𝐴−1/2

𝑘
(𝑥 − 𝑥𝑘)

which means that

𝑇𝑘 (𝐸𝑘) = B𝑑𝑟 and 𝑇𝑘 (𝐸𝑘 (1/𝑟)) = B𝑑1 .

This ensures that B𝑑1 ⊂ dom( 𝑓𝑘) but the price is that 𝑟 = 𝑂 (𝑑3/2) and this leads
to a final sample complexity of

𝑂

(
𝑑6 polylog(𝑑, 1/𝛿, 1/𝜀)

𝜀2

)
.

(2) Use the extension defined in Proposition 3.22 in place of 𝑓 so that
dom( 𝑓𝑘) = R𝑑 . The challenge is that 𝑓𝑘 may not be bounded anymore so the
concentration analysis in the proof of Lemma 9.15 is no longer valid. To handle
this note that if the algorithm ever queries a point 𝑓𝑘 at some 𝑦 for which
𝑇−1
𝑘

(𝑦) ∉ 𝐾 , then you can use the separation oracle to define the cutting plane.
On the other hand, if the probability of querying 𝑓𝑘 at such a point is very low,
then the additional variance introduced by using the surrogate loss is minimal
and some version of Lemma 9.15 continues to hold. After bashing out all the
details you will eventually arrive at a sample complexity bound of

𝑂

(
𝑑5 polylog(𝑑, 1/𝛿, 1/𝜀)

𝜀2

)
.

9.8 Proof of Proposition 9.23 ( )

We start with a lemma:

Lemma 9.25 (Lemma 1, Khachiyan 1990) Let 𝐸★ = 𝐸 (𝑥★, 𝐴★) = mvie(𝐾)
and 𝐸 = 𝐸 (𝑥, 𝐴) ⊂ 𝐾 . Then,

vol(𝐸)
vol(𝐸★)

≤ min
𝜒∈𝐼

𝜒 exp(1 − 𝜒) , 𝐼 =

 min
𝜂∈S𝑑−1

1



𝐴−1/2𝜂





𝐴−1/2

★ 𝜂




 , max
𝜂∈S𝑑−1

1



𝐴−1/2𝜂





𝐴−1/2

★ 𝜂





 .

Proof of Proposition 9.23 Assume by means of a coordinate change that
𝐸★ = mvie(𝐾) = 𝐸 (𝑥, 𝐷−2) and 𝐺★ = mvie(𝐾 ∩ 𝐻) = 𝐸 (−𝑥, 𝐷2) for some
diagonal matrix 𝐷 with eigenvalues 𝜆1 ≥ · · · ≥ 𝜆𝑑 and 𝑥 ∈ R𝑑 . This has been
chosen so that 𝐸★ = 𝐷 (B𝑑1 ), which means that vol(𝐸★) = det(𝐷) vol(B𝑑1 ). We
claim that 𝐸 = 𝐸 (0, (1 + 𝑥𝑥⊤)−1/2) ⊂ 𝐾 . Recall that the support function of a
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convex set 𝐴 ⊂ R𝑑 is ℎ𝐴(𝑢) = sup𝑥∈𝐴 ⟨𝑢, 𝑥⟩. Suppose that 𝑢 ∈ R𝑑 . Then

ℎ𝐸★ (𝑢) = ⟨𝑢, 𝑥⟩ + ∥𝐷𝑢∥ ≤ ℎ𝐾 (𝑢)
ℎ𝐺★ (𝑢) = − ⟨𝑢, 𝑥⟩ + ∥𝐷−1𝑢∥ ≤ ℎ𝐾 (𝑢) .

Multiplying these inequalities shows that

∥𝑢∥2 ≤ ∥𝐷𝑢∥∥𝐷−1𝑢∥ ≤ (ℎ𝐾 (𝑢) − ⟨𝑢, 𝑥⟩)(ℎ𝐾 (𝑢) + ⟨𝑢, 𝑥⟩) = ℎ𝐾 (𝑢)2 − ⟨𝑢, 𝑥⟩2 ,

where the first inequality follows Cauchy-Schwarz. Rearranging shows that for
any 𝑢 ∈ R𝑑 ,

ℎ𝐸 (𝑢) =



√1 + 𝑥𝑥⊤𝑢




 = √︃
∥𝑢∥2 + ⟨𝑢, 𝑥⟩2 ≤ ℎ𝐾 (𝑢) .

Therefore 𝐸 ⊂ 𝐾 . Next, with 𝐴−1/2 =
√
1 + 𝑥𝑥⊤,

min
𝜂∈S𝑑−1

1



𝐴−1/2𝜂




∥𝐷𝜂∥ ≤

√︃
1 + ∥𝑥∥2

𝜆1
≤ max
𝜂∈S𝑑−1

1



𝐴−1/2𝜂




∥𝐷𝜂∥ .

Hence, by Lemma 9.25,√︃
1 + ∥𝑥∥2

𝜆1 · · · 𝜆𝑑
=

vol(𝐸)
vol(𝐸★) ≤

√︃
1 + ∥𝑥∥2

𝜆1
exp

©­­«1 −

√︃
1 + ∥𝑥∥2

𝜆1

ª®®¬ .
And therefore

vol(𝐺★)
vol(𝐸★) =

1
𝜆2

1 · · · 𝜆
2
𝑑

≤ 1
𝜆2

1
exp

©­­«2 −
2
√︃

1 + ∥𝑥∥2

𝜆1

ª®®¬ .
By assumption there exists a point 𝑦 ∈ 𝜕𝐻 ∩ 𝐸★( 1

2 ). By definition 𝑦 ∉ int(𝐺★).
Since 𝑦 ∈ 𝐸★( 1

2 ) there exists an 𝜂 ∈ B𝑑1/2 such that 𝑦 = 𝑥 + 𝐷𝜂. Therefore

1 ≤ ∥𝑦 − (−𝑥)∥𝐷2 = ∥2𝑥 + 𝐷𝜂∥𝐷2 ≤ 2𝜆1 ∥𝑥∥ +
𝜆2

1
2
,

where in the first inequality we used the fact that 𝑦 ∉ int(𝐺★) = {𝑧 : ∥𝑧 + 𝑥∥𝐷2 <

1}. Rearranging shows that

∥𝑥∥2 ≥
max(0, 1 − 𝜆2

1/2)2

4𝜆2
1

.
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Therefore

vol(𝐺★)
vol(𝐸★) ≤ sup

𝜆1>0

1
𝜆2

1
exp

©­­­­«
2 −

2
√︂

1 + max(0,1−𝜆2
1/2)2

4𝜆2
1

𝜆1

ª®®®®¬
≤ 0.93 .

□

9.9 Notes

9.i: Algorithm 9.2 is due to Even-Dar et al. (2006). For our application it
makes no difference, but you may be interested to know this algorithm is not
quite optimal in terms of the logarithmic factors. The optimal algorithm is called
median elimination and is also due to Even-Dar et al. (2006).

9.ii: Infinite-armed bandits of the kind studied in Section 9.2 are still a
little niche and go back to Berry et al. (1997). Generally speaking the objective
is to find a near-optimal arm and various assumptions are made on ℎ and 𝜌.
Carpentier (2024) essentially introduced the much weaker objective of finding
an action that is close to the mean of ℎ under 𝜌 and provided a slightly more
complicated algorithm than analysed here but based on the same principles.

9.iii: The algorithm for finding a suitable cutting plane is inspired by
Lattimore and György (2021a) and Carpentier (2024). The former paper uses an
optimistic surrogate combined with an overly complicated method for finding
the cutting point. The latter uses the pessimistic surrogate from Chapter 5 along
with a beautiful argument about when its gradient is nevertheless useful to
define a cutting plane at certain points. She uses an infinite-armed bandit to
find suitable points, but this is combined with a more complicated recursive
argument. The rates we obtain here are the same up to logarithmic factors as
those obtained by Carpentier (2024).

9.iv: The algorithms presented in this chapter do not have well-controlled
regret. What is missing is a degree of adaptivity within the mechanism for
finding a cutting plane that stops early when there is a large margin. This idea
was used by Lattimore and György (2021a) and can probably be adapted to the
more refined algorithms in this chapter.

9.v: Vaidya’s method (Vaidya, 1996) and its refinement by Lee et al. (2015)
provide even faster cutting plane methods for polytopes. What is needed to use
these methods in combination with Algorithm 9.5 is to prove that an inexact
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center suffices to drive the algorithm, just as we did for the method of inscribed
ellipsoids with Proposition 9.23.

9.vi: All of the assertions about the ellipsoid method in Section 9.7 are
explained and proven in Chapters 3 and 4 of the wonderful book by Grötschel
et al. (2012). When the half-space is not at the center, the method is referred to
as the shallow cut ellipsoid method.

Theorem 9.26 Suppose the dimension 𝑑 ≥ 2. Given an ellipsoid 𝐸 = 𝐸 (𝑎, 𝐴)
and half-space 𝐻 = 𝐻 (𝑥, 𝑔) let 𝐸 (𝐵, 𝑏) = mvee(𝐸 ∩ 𝐻). Let 𝜆 =

⟨𝑔,𝑎−𝑥⟩
∥𝑔∥𝐴

.
Then:

(1) 𝐻 intersects 𝐸 if and only if 𝜆 ∈ [−1, 1]. Moreover, if 𝜆 ∈ [−1,−1/𝑑],
then 𝐸 (𝑏, 𝐵) = 𝐸 (𝐴, 𝑎).
(2) If 𝜆 ∈ [−1/𝑑, 1), then with 𝜂 =

𝐴𝑔

∥𝑔∥𝐴
,

𝑏 = 𝑎 − 1 + 𝑑𝜆
𝑑 + 1

𝜂 and 𝐵 =
𝑑2 (1 − 𝜆2)
𝑑2 − 1

[
𝐴 − 2(1 + 𝑑𝜆)

(𝑑 + 1) (1 + 𝜆) 𝜂𝜂
⊤
]
.

(3) If 𝜆 ∈ (−1/𝑑, 1/𝑑), then vol(mvee(𝐸 ∩𝐻)) ≤ vol(𝐸) exp
(
− (1 − 𝑑𝜆)2

5𝑑

)
.

The proof of Theorem 9.26 is given by Grötschel et al. (2012, Chapter 3).
The advantage of the ellipsoid method is that only a separation oracle is needed.
The downside is that the sample complexity is a factor of 𝑑 worse than what we
obtained using the center of gravity or inscribed ellipsoid methods.

Exercise 9.27 ⋆⋆⋆? Suppose 𝐾 is represented by a separation oracle.
Use the separation oracle to construct a polytope 𝑃 such that 𝐾 ⊂ 𝑃. Use the
extension in Proposition 3.20 to extend the loss from a shrunk subset of 𝐾 to 𝑃.
Use the ideas in Section 9.7 to implement the method of inscribed ellipsoid and
obtain a polynomial time algorithm with 𝑂̃ (𝑑4/𝜀2) sample complexity.

9.vii: In our analysis of Algorithm 9.6 and Algorithm 9.7 we assumed
exact computation of isotropic position and the maximum volume inscribed
ellipsoid. The following exercise asks you to prove these algorithms are robust
to approximations:

Exercise 9.28 ⋆⋆⋆� Suppose that 𝐾 is represented by a separation oracle.
Show that Algorithm 9.6 is robust to approximation of isotropic position and
give a complexity bound on all of the following:

◦ Number of queries to the loss function.
◦ Number of calls to the separation oracle.
◦ Number of arithmetic operations.
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Exercise 9.29 ⋆⋆⋆� Suppose that 𝐾 is represented by an intersection
of half-spaces. Show that Algorithm 9.7 is robust to approximation of the
maximum volume inscribed ellipsoid and give a complexity bound on the
number of queries to the loss function and the number of arithmetic operations.

In both cases all complexities should poly(𝑑, 𝑚, 1/𝜀, log(𝑅/𝑟)) where 𝑚 = 1
for Exercise 9.28 and the number of constraints defining 𝐾 in Exercise 9.29
and it is assumed that B𝑑𝑟 ⊂ 𝐾 ⊂ B𝑑

𝑅
for known 0 < 𝑟 ≤ 𝑅. You will need to

combine results from many sources. A good place to start the references in
Section 3.9.
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We can now present a simple method for obtaining 𝑂̃ (𝑑1.5√𝑛) regret for losses
in ℱb with the limitation that the analysis only works in the stochastic setting
where 𝑓𝑡 = 𝑓 for all rounds.

Assumption 10.1 The following hold:

(1) The setting is stochastic: 𝑓𝑡 = 𝑓 for all 𝑡.
(2) The loss is bounded: 𝑓 ∈ ℱb.
(3) The constraint set is rounded: B𝑑1 ⊂ 𝐾 ⊂ B𝑑2𝑑 .

The assumption that 𝐾 is rounded can be relaxed by repositioning the
constraint set as explained in Section 3.6. The bandit algorithm presented
here is based on online Newton step, which is a second-order online learning
algorithm. Compared to cutting plane methods in Chapter 9, the method here has
an improved dimension-dependence and can be generalised to the adversarial
setting (Chapter 11). On the negative side, the analysis is quite involved and
the algorithm is hard to tune. We start the chapter with an intuitive argument
about the role of curvature in bandit convex optimisation. There follows an
introduction to online Newton step in the full information setting and a brief
explanation of some concepts in convex geometry. The algorithm and its analysis
are presented at the end. To ease the presentation and analysis we let 𝛿 ∈ (0, 1)
be a small positive constant and

𝐿 = 𝐶 log(1/𝛿) ,

where 𝐶 > 0 is a sufficiently large universal constant. We will prove a bound
on the regret that holds with probability at least 1 − 𝛿 but at various points we
implicitly assume that 𝛿 ≤ poly(1/𝑛, 1/𝑑).

143
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10.1 The blessing and curse of curvature

The presence of curvature in bandit convex
optimisation is both a blessing and a curse. The
key to obtaining optimal regret is to make sure
you exploit the positive aspects while taking
care to control the negative ones. It helps to
think about the case where the loss is nearly quadratic in the sense that it has
a nearly constant Hessian. The main implications of high curvature are the
following:

◦ Smoothing should be done on a smaller radius to maintain a suitably small
approximation error. This increases the variance of the gradient estimator
which makes gradient-based online learning algorithms unstable.

◦ The variance of the gradient estimator is modulated by the regularisation
of the algorithm, which suggests that the amount of regularisation should
increase with the curvature. But adding more regularisation means the
algorithm moves more slowly, which normally increases its regret. The
saving grace is that in the presence of curvature the regret decreases
quadratically as the iterate approaches the minimiser.

We saw this behaviour already in Section 6.5 where the loss was assumed
to be in ℱb,sm,sc. Provided that 𝛽/𝛼 is not too large, such losses are nearly
quadratic. Algorithm 6.3 uses a self-concordant barrier for regularisation with
an additional quadratic that depends on 𝛼 and uses a gradient estimate that
integrates over a region that is small for large 𝛼. That is, more curvature implies
more regularisation and less smoothing. There are multiple challenges when
generalising this approach to the setting where the loss is only assumed to be in
ℱb:

◦ The amount of curvature is not known.
◦ Even if the loss is approximately quadratic, the curvature can be large in

some directions and small in others.
◦ The loss may not even be differentiable. For example it could be piecewise

linear. How should we understand the role of curvature in these situations?

The plan is to use a surrogate loss function that does so much smoothing that it
is nearly quadratic on a region containing both the current iterate 𝜇𝑡 and the
minimiser of the loss. The curvature of this surrogate can then be estimated and
used in online Newton step, which we explain next.
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10.2 Online Newton step

Let 𝑞1, . . . , 𝑞𝑛 : R𝑑 → R be a sequence of (possibly non-convex) quadratic
functions and consider the full information setting where in round 𝑡 the learner
proposes 𝜇𝑡 ∈ 𝐾 observes the entire function 𝑞𝑡 and the regret relative to 𝑥 ∈ 𝐾
is �qReg𝑛 (𝑥) =

𝑛∑︁
𝑡=1

(𝑞𝑡 (𝜇𝑡 ) − 𝑞𝑡 (𝑥)) .

Online Newton step is a second-order method summarised in Algorithm 10.1.

1 args : 𝜂 > 0 , Σ−1
1 ∈ S𝑑++ and 𝜇1 ∈ 𝐾

2 f o r 𝑡 = 1 to 𝑛

3 l e t 𝑔𝑡 = 𝑞
′
𝑡 (𝜇𝑡 ) and 𝐻𝑡 = 𝑞

′′
𝑡 (𝜇𝑡 )

4 u p d a t e Σ−1
𝑡+1 = Σ−1

𝑡 + 𝜂𝐻𝑡
5 u p d a t e 𝜇𝑡+1 = arg min𝑥∈𝐾 ∥𝑥 − [𝜇𝑡 − 𝜂Σ𝑡+1𝑔𝑡 ] ∥2

Σ−1
𝑡+1

Algorithm 10.1: Online Newton step for quadratic losses

Before the analysis, let us make some connections between online Newton
method and other techniques in online learning.

Connection to exponential weights A little notation is needed. Let Θ =

R𝑑 × S𝑑++ and Θ𝐾 = 𝐾 × S𝑑++. Let 𝜇𝜃 and Σ𝜃 be the obvious projections from
Θ into R𝑑 and S𝑑++ respectively and abbreviate N (𝜃) = N (𝜇𝜃 , Σ𝜃 ). Lastly,
let KL(𝜃, 𝜗) be the relative entropy between Gaussian distributions N (𝜃) and
N (𝜗), which has an explicit form:

KL(𝜃, 𝜗) = 1
2

[
log det

(
Σ𝜗Σ

−1
𝜃

)
+ tr(Σ𝜃Σ−1

𝜗 ) + ∥𝜇𝜃 − 𝜇𝜗 ∥2
Σ−1
𝜗

− 𝑑
]
.

Assume that 1
2 ∥·∥2

Σ1
+ ∑𝑡

𝑠=1 𝑞𝑠 is convex for all 𝑡. Suppose that 𝑝 is the density
of N (𝜇1, Σ1) and

𝑝𝑡 (𝑥) =
𝑝(𝑥) exp

(
−𝜂∑𝑡−1

𝑠=1 𝑞𝑠 (𝑥)
)

∫
R𝑑 exp

(
−𝜂∑𝑡−1

𝑠=1 𝑞𝑠 (𝑦)
)
𝑝(𝑦) d𝑦

,

which is an exponential weights distribution with a Gaussian ‘prior’ 𝑝. Since
the losses are quadratic, 𝑝𝑡 is the density of N (𝜃𝑡 ) for some 𝜃𝑡 ∈ Θ. Define

𝜃𝑡 = arg min
𝜃∈Θ𝐾

KL(𝜃, 𝜃𝑡 ) ,
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which is the projection of 𝜃𝑡 onto Θ𝐾 with respect to the relative entropy. Then
van der Hoeven et al. (2018) prove that 𝜃𝑡 = (𝜇𝑡 , Σ𝑡 ) with the right-hand side
being the iterates produced by online Newton step.

Classical Newton The classical Newton method for unconstrained minimisation
of a loss function 𝑓 : R𝑑 → R starts with 𝑥1 ∈ R𝑑 and uses the update rule
𝑥𝑡+1 = 𝑥𝑡 − 𝑓 ′′ (𝑥𝑡 )−1 𝑓 ′ (𝑥𝑡 ), which corresponds to minimising the quadratic
approximation of 𝑓 at 𝑥𝑡 . Online Newton step looks superficially similar, but the
preconditioning matrix is based on the accumulated curvature rather than the
local curvature. And there is the learning rate that further slows the algorithm.

High-level behaviour Let us suppose for a moment that 𝑑 = 1 and 𝑓 :
[−1, 1] → [0, 1] is convex and minimised at 0. In our application later the 𝑞𝑡
are estimates of a quadratic approximation of an extension of 𝑓 . But to simplify
our thinking let us suppose that 𝑓 is quadratic and 𝑞𝑡 = 𝑓 , which means that
𝑔𝑡 = 𝑓 ′ (𝜇𝑡 ) and 𝐻𝑡 = 𝑓 ′′ (𝜇𝑡 ) ≜ 𝐻. Suppose that Σ−1

1 = 1. By construction,
Σ−1
𝑡 = 1 + 𝜂𝑡𝐻, which means that

𝜇𝑡+1 = 𝜇𝑡 −
𝜂

1 + 𝜂𝑡𝐻 𝑔𝑡

In our application 𝜂 = Θ(
√︁

1/𝑛), which means that online Newton step moves
very slowly as 𝑡 grows unless there is very little curvature. The corresponding
flow in continuous time is

d𝜇(𝑡) = − 𝜂

1 + 𝜂𝑡𝐻 𝑓 ′ (𝜇(𝑡)) d𝑡 = − 𝜂𝐻𝜇(𝑡)
1 + 𝜂𝑡𝐻 d𝑡 ,

which has a closed-form solution 𝜇(𝑡) = 𝜇 (0)
1+𝜂𝑡𝐻 and the regret is∫ 𝑛

0
( 𝑓 (𝜇(𝑡)) − 𝑓 (0)) d𝑡 =

𝐻

2

∫ 𝑛

0
𝜇(𝑡)2 d𝑡 =

𝐻

2

∫ 𝑛

0

(
𝜇(0)

1 + 𝜂𝑡𝐻

)2
d𝑡 = 𝑂 (

√
𝑛) .

Of course, the regret of the gradient flow would be greatly reduced by increasing
𝜂. But in the bandit setting 𝑔𝑡 and 𝐻𝑡 need to be estimated and the increased
regularisation is needed to control the variance. What the argument above shows
is that despite the slow progress of the algorithm when 𝜂 = Θ(𝑛−1/2), a regret
of 𝑂 (

√
𝑛) is nevertheless achievable.

Analysis Moving now to the analysis of online Newton step, which mirrors that
of other gradient-based algorithms. We have the following theorem:
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Theorem 10.2 Suppose that Σ−1
𝑡 ∈ S𝑑++ for all 1 ≤ 𝑡 ≤ 𝑛 + 1, then for any

𝑥 ∈ 𝐾 ,

1
2
∥𝜇𝑛+1 − 𝑥∥2

Σ−1
𝑛+1

≤ 1
2
∥𝜇1 − 𝑥∥2

Σ−1
1

+ 𝜂2

2

𝑛∑︁
𝑡=1

∥𝑔𝑡 ∥2
Σ𝑡+1

− 𝜂�qReg𝑛 (𝑥) . (10.1)

Remark 10.3 The condition that the inverse covariance matrices are positive
definite corresponds to assuming that

1
2
∥·∥2

Σ−1
1

+
𝑡−1∑︁
𝑠=1

𝑞𝑠

is convex for all 1 ≤ 𝑡 ≤ 𝑛 + 1. In most applications the first term in (10.1) is
dropped and the regret is moved to the left-hand side. An interesting feature of
our application of this result is that we use it to simultaneously bound the regret
and ∥𝜇𝑛+1 − 𝑥∥Σ−1

𝑛+1
.

Proof of Theorem 10.2 By definition, for any 𝑥 ∈ 𝐾 ,

1
2
∥𝜇𝑡+1 − 𝑥∥2

Σ−1
𝑡+1

(a)

≤ 1
2
∥𝜇𝑡 − 𝑥 − 𝜂Σ𝑡+1𝑔𝑡 ∥2

Σ−1
𝑡+1

(b)

=
1
2
∥𝜇𝑡 − 𝑥∥2

Σ−1
𝑡+1

− 𝜂 ⟨𝑔𝑡 , 𝜇𝑡 − 𝑥⟩ +
𝜂2

2
∥𝑔𝑡 ∥2

Σ𝑡+1

(c)

=
1
2
∥𝜇𝑡 − 𝑥∥2

Σ−1
𝑡

− 𝜂(𝑞𝑡 (𝜇𝑡 ) − 𝑞𝑡 (𝑥)) +
𝜂2

2
∥𝑔𝑡 ∥2

Σ𝑡+1
,

(10.2)

where in (a)we used the assumption that Σ−1
𝑡+1 is positive definite so that ∥·∥Σ−1

𝑡+1
is a norm and 𝑥 ∈ 𝐾 and the definition

𝜇𝑡+1 = arg min
𝜇∈𝐾

∥𝜇 − [𝜇𝑡 − 𝜂Σ𝑡+1𝑔𝑡 ] ∥Σ−1
𝑡+1
.

For the equalities, (b) is obtained by expanding the square, (c) since

1
2
∥𝜇𝑡 − 𝑥∥2

Σ−1
𝑡+1

=
1
2
∥𝜇𝑡 − 𝑥∥2

Σ−1
𝑡

+ 𝜂

2
(𝜇𝑡 − 𝑥)⊤𝐻𝑡 (𝜇𝑡 − 𝑥)

=
1
2
∥𝜇𝑡 − 𝑥∥2

Σ−1
𝑡

− 𝜂(𝑞𝑡 (𝜇𝑡 ) − 𝑞𝑡 (𝑥)) + 𝜂 ⟨𝑔𝑡 , 𝜇𝑡 − 𝑥⟩ .

The proof is completed by summing the inequality in (10.2) over 𝑡 from 1 to
𝑛. □
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10.3 Regularity

In our application of online Newton step to bandits it will be important that
the constraint set 𝐾 is suitably rounded. We explained the basics already in
Section 3.6 but here we introduce a more subtle concept based on the mean
width of the polar body. Under Assumption 10.1,

B𝑑1 ⊂ 𝐾 ⊂ B𝑑2𝑑 . (10.3)

Note, any improvements in the constant 2 would only lead to a minor constant
factor improvements in the regret. Let 𝜋 be the Minkowski functional of 𝐾
(Section 3.1) and

𝐾𝜀 = {𝑥 ∈ 𝐾 : 𝜋(𝑥) ≤ 1 − 𝜀} = (1 − 𝜀)𝐾 .

Let 𝑋 be uniformly distributed on S𝑑−1
1 and define

𝑀 (𝐾) = E[𝜋(𝑋)] .

The Minkowski functional is the support function of the polar of 𝐾

(Lemma 3.3(5)), which means that for 𝑥 ∈ S𝑑−1
1 , 𝜋(𝑥) + 𝜋(−𝑥) is the width

of the polar 𝐾◦ in direction 𝑥. Hence 𝑀 (𝐾) is half the mean width of 𝐾◦

as illustrated in Figure 10.1. For our application it is best if 𝐾 is positioned
so that 𝑀 (𝐾) is small. Thanks to our assumption that B𝑑1 ⊂ 𝐾 ⊂ B𝑑2𝑑 ,
1

2𝑑 ∥𝑥∥ ≤ 𝜋(𝑥) ≤ ∥𝑥∥ and hence 𝑀 (𝐾) ∈ [ 1
2𝑑 , 1]. This estimate is often loose,

however. Table 10.1 gives bounds on the inner/outer radii and 𝑀 (𝐾) for 𝐾 in
various classical positions. While Löwner’s position yields the strongest bound,
all rows are relevant when computation is important, with the best position
depending on how 𝐾 is represented and what computational resources are
available.

Remark 10.4 That there exists an affine transformation 𝑇 such that (𝑇𝐾)◦
is in isotropic position is non-obvious. Much less that 𝑇 can be approximately
computed efficiently. More details can be found in Note 10.iii.

Proof of claims in Table 10.1 (10.1.a) Let 𝑤(𝐾) be the half mean width of
a convex body 𝐾, which is defined by 𝑤(𝐾) = E[ℎ𝐾 (𝜃)] where 𝜃 has law
U (S𝑑−1

1 ) and ℎ𝐾 is the support function of 𝐾 . Suppose that 1
𝑑
𝐾 is in Löwner’s

position. By definition (𝐾/𝑑)◦ = 𝑑𝐾◦ is in John’s position. Combining John’s
theorem and the fact that polarity reverses inclusion again shows that B𝑑1 ⊂
𝐾 ⊂ B𝑑

𝑑
. Let 𝑆 be a regular simplex in John’s position. Barthe (1998) proved

that the mean width of a convex body in John’s position is maximised by
𝑆 and a result of Finch (2011) shows that 𝑤(𝑆) = 𝑂 (

√︁
𝑑 log(𝑑)). Therefore

𝑀 (𝐾) = 𝑤(𝐾◦) = 1
𝑑
𝑤(𝑑𝐾◦) ≤ 1

𝑑
𝑤(𝑆) = 𝑂 (

√︁
log(𝑑)/𝑑).
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𝐾◦

0

𝑥

−𝑥

𝜋(𝑥)

𝜋(−𝑥)

Figure 10.1: The width of 𝐾◦ in direction 𝑥 is 𝜋(𝑥) + 𝜋(−𝑥). The quantity
𝑀 (𝐾) is obtained by integrating the width uniformly over all directions in
𝑥 ∈ S𝑑−1

1 and dividing by two.

conditions bounds 𝑀 (𝐾)

10.1.a 1
𝑑
𝐾 in Löwner’s position B𝑑1 ⊂ 𝐾 ⊂ B𝑑

𝑑
𝑂̃ (𝑑−1/2)

10.1.b 𝐾 isotropic B𝑑1 ⊂ 𝐾 ⊂ B𝑑
𝑑+1 ≤ 1

10.1.c 𝐾 symmetric, isotropic B𝑑1 ⊂ 𝐾 ⊂ B𝑑
𝑑+1 𝑂̃ (𝑑−1/10)

10.1.d 𝐾 in John’s position B𝑑1 ⊂ 𝐾 ⊂ B𝑑
𝑑

≤ 1

10.1.e (𝑑 + 1)𝐾◦ isotropic B𝑑1 ⊂ 𝐾 ⊂ B𝑑
𝑑+1 𝑂̃ (𝑑−1/4)

10.1.f 𝐾 symmetric, 1√
𝑑
𝐾 in John’s position B𝑑√

𝑑
⊂ 𝐾 ⊂ B𝑑

𝑑
≤ 1/

√
𝑑

10.1.g 𝐾 symmetric, (𝑑 + 1)𝐾◦ isotropic B𝑑1 ⊂ 𝐾 ⊂ B𝑑
𝑑+1 𝑂̃ (𝑑−1/2)

Table 10.1: Classical positions and bounds on the inner/outer radii and 𝑀 (𝐾).
More discussion and references appear in the notes.

(10.1.b,10.1.d) Well-roundedness follows from Theorem 3.16 and Theo-
rem 3.15, respectively. Since in both positions B𝑑1 ⊂ 𝐾 , it follows that 𝐾◦ ⊂ B𝑑1
and hence 𝑀 (𝐾) ≤ 1. Note, this claim is not improvable for John’s position as
explained in Note 10.ii.
(10.1.c) Well-roundedness follows as in 10.1.b. The bound on 𝑀 (𝐾) is supplied
by Giannopoulos and Milman (2014) and is most likely conservative.
(10.1.e) That B𝑑1 ⊂ 𝐾 ⊂ B𝑑

𝑑+1 follows because polarity reverses inclusion and
by Theorem 3.16. The bound on 𝑀 (𝐾) is due to Pivovarov (2010).
(10.1.f) Suppose that 𝐾 is symmetric and in John’s position. Then by John’s
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theorem (Artstein-Avidan et al., 2015, Theorem 2.1.3), B𝑑1 ⊂ 𝐾 ⊂ B𝑑√
𝑑
. Then

use the scaling and repeat the argument for 10.1.d.
(10.1.g) As for (10.1.e) but use the result of Milman (2015) to bound 𝑀 (𝐾).

□

An essential ingredient in many previous regret analyses is a bound on the
magnitude of the observed losses. The algorithm in this chapter replaces the real
loss with the extended loss function defined in Section 3.7 and the magnitude of
this loss depends on the Minkowski functional. For this reason it is essential to
have a good understand of the law of 𝜋(𝑋) when 𝑋 is Gaussian, which the next
two lemmas provide.

Lemma 10.5 Suppose that 𝑋 has law N (𝜇,Σ) with 𝜇 ∈ 𝐾 and Σ ⪯ 𝜎21.
Then

(1) E[𝜋(𝑋)] ≤ 1 + 𝜎𝑀 (𝐾)
√
𝑑; and

(2) P
(
|𝜋(𝑋) − E[𝜋(𝑋)] | ≥

√︁
2𝜎2 log(2/𝛿)

)
≤ 𝛿 for all 𝛿 ∈ (0, 1).

Proof Since 𝜋 is sub-additive (Lemma 3.3),

E[𝜋(𝑋)] = E[𝜋(𝑋 − 𝜇 + 𝜇)]
≤ E[𝜋(𝑋 − 𝜇)] + 𝜋(𝜇)
≤ 1 + E[𝜋(𝑋 − 𝜇)] . (10.4)

By assumption 𝜎21 − Σ is positive semidefinite. Let𝑊 and𝑈 be independent
of 𝑋 and have laws N (0, 𝜎21) and N (0, 𝜎21 − Σ) respectively. Note that
𝑈 + 𝑋 − 𝜇 has the same law as 𝑊 and by Jensen’s inequality E[𝜋(𝑋 − 𝜇)] ≤
E[𝜋(𝑋 − 𝜇 + 𝑈)] = E[𝜋(𝑊)]. Furthermore, since 𝑊/∥𝑊 ∥ and ∥𝑊 ∥ are
independent,

E[𝜋(𝑋 − 𝜇)] ≤ E[𝜋(𝑊)] = E
[
𝜋

(
𝑊

∥𝑊 ∥

)]
E[∥𝑊 ∥] ≤ 𝜎𝑀 (𝐾)

√
𝑑 ,

where we used that E[∥𝑊 ∥] ≤ E[∥𝑊 ∥2]1/2 = 𝜎
√
𝑑 and 𝑊/∥𝑊 ∥ is uniformly

distributed on S𝑑−1
1 . Combining this with (10.4) completes the proof of part (1).

For part (2), by Lemma 3.3(7) and the assumption that B𝑑1 ⊂ 𝐾 we have
lip(𝜋) ≤ 1. The result follows from Theorem B.15. □

As mentioned, we are planning to use the extension introduced in Section 3.7
where the functions 𝜋∧ (𝑥) = max(1, 𝜋(𝑥)/(1− 𝜀)) and 𝑣(𝑥) = 𝜋∧ (𝑥) −1 appear
with 𝜀 ∈ (0, 1/2). The following bound will be useful:
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Lemma 10.6 Let 𝜀 ∈ (0, 1/2) and 𝜋∧ (𝑥) = max(1, 𝜋(𝑥)/(1 − 𝜀)) and 𝑣(𝑥) =
𝜋∧ (𝑥) − 1. Suppose that 𝑋 has law N (𝜇, Σ) with 𝜇 ∈ 𝐾𝜀 and ∥Σ∥ ≤ 1

𝛿
. Then

E[𝑣(𝑋)2] ≤ 𝐿

(
1 + 𝑀 (𝐾)

√︁
𝑑 ∥Σ∥

) [
tr

(
Σ lim
𝜚→0

E[𝑣′′𝜚 (𝑋)]
)
+ 𝛿

]
,

where 𝑣 𝜚 = 𝑣 ∗ 𝜙𝜚 where 𝜙𝜚 is the smoothing kernel defined in Section 3.8.

Proof ( ) By Lemma B.8,

E[𝑣(𝑋)2] ≤ ∥𝑣(𝑋)∥𝜓1

(
E[𝑣(𝑋)]

(
1 + log

(
E[𝑣(𝑋)2]

𝛿2

))
+ 𝛿

)
. (10.5)

By convexity and the fact that lip(𝑣) < ∞,

E[𝑣(𝑋)] = lim
𝜚→0

E[𝑣 𝜚 (𝑋)]

≤ lim
𝜚→0

[
𝑣 𝜚 (𝜇) + E

[〈
𝑣′𝜚 (𝑋), 𝑋 − 𝜇

〉] ]
Convexity

= lim
𝜚→0

E
[〈
𝑣′𝜚 (𝑋), 𝑋 − 𝜇

〉]
= lim
𝜚→0

E
[〈
Σ𝑣′𝜚 (𝑋),Σ−1 (𝑋 − 𝜇)

〉]
= tr

(
Σ lim
𝜚→0

E[𝑣′′𝜚 (𝑋)]
)
. Integration by parts

By the assumption that 𝜀 < 1/2 and because lip(𝜋) ≤ 1, it follows that lip(𝑣) ≤ 2.
Hence, using Theorem B.15 and Lemma 10.5(1),

∥𝑣(𝑋)∥𝜓1 ≤ ∥𝑣(𝑋) − E[𝑣(𝑋)] ∥𝜓1 + ∥E[𝑣(𝑋)]∥𝜓1

≤ 2
√︁

6 ∥Σ∥ + E[𝑣(𝑋)]
log(2)

≤ 2
√︁

6 ∥Σ∥ +
2(1 + 𝑀 (𝐾)

√︁
𝑑 ∥Σ∥)

log(2) .

The second moment E[𝑣(𝑋)2] that appears in (10.5) can now be bounded using
Lemma B.4 and the result follows by naive simplification. □

10.4 Extension and surrogate losses

Like in Chapter 6 we use a quadratic surrogate. Unlike that chapter, however,
the curvature of the surrogate now depends on the loss function and needs to be
estimated. The other distinction is that in Chapter 6 the actions were sampled
from a scaled Dikin ellipsoid, which is guaranteed to be contained in 𝐾. By
contrast, the algorithm presented in this chapter will sample from a Gaussian,
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which means its actions may lie outside of 𝐾, possibly with high probability.
This problem is handled by making use of the extension in Section 3.7. Let 𝜋
be the Minkowski functional of 𝐾 and for 𝜀 ∈ (0, 1/2) let 𝐾𝜀 = (1 − 𝜀)𝐾 and
𝜋∧ (𝑥) = max(1, 𝜋(𝑥)/(1 − 𝜀)) and

𝑒(𝑥) = 𝜋∧ (𝑥) 𝑓
(

𝑥

𝜋∧ (𝑥)

)
+ 2(𝜋∧ (𝑥) − 1)

𝜀
. (10.6)

Note that 𝜋∧ (𝑥) − 1 = 0 and 𝑒(𝑥) = 𝑓 (𝑥) for 𝑥 ∈ 𝐾𝜀 and Proposition 3.22
ensures that 𝑥 ↦→ 𝜋∧ (𝑥) 𝑓 (𝑥/𝜋∧ (𝑥)) + 1−𝜀

𝜀
(𝜋∧ (𝑥) − 1) is convex. The additional

factor in the second term of the above display ensures that 𝑒 has slightly more
curvature, which gives the algorithm an additional nudge to play inside 𝐾𝜀 . The
extension in (10.6) is defined on all of R𝑑 and can be queried at any 𝑥 ∈ R𝑑 by
evaluating the real loss 𝑓 at 𝑥/𝜋∧ (𝑥). To simplify the notation it is convenient
to abstract away this reduction by redefining the meaning of the actions 𝑋𝑡
and observed losses 𝑌𝑡 . In round 𝑡 the algorithm samples 𝑋𝑡 from a Gaussian
N (𝜇𝑡 , Σ𝑡 ) but actually plays 𝑋𝑡/𝜋∧ (𝑋𝑡 ) ∈ 𝐾𝜀 and observes 𝑓 (𝑋𝑡/𝜋∧ (𝑋𝑡 )) +𝜀𝑡
and computes the (noisy) loss relative to the extension as

𝑌𝑡 = 𝑒(𝑋𝑡 ) + 𝜋∧ (𝑋𝑡 )𝜀𝑡 = 𝜋∧ (𝑋𝑡 )
[
𝑓

(
𝑋𝑡

𝜋∧ (𝑋𝑡 )

)
+ 𝜀𝑡

]
+ 2(𝜋∧ (𝑋𝑡 ) − 1)

𝜀
.

Note that the noise term is now effectively 𝜋∧ (𝑋𝑡 )𝜀𝑡 , which conditioned on 𝑋𝑡
can have variance as large as 𝜋∧ (𝑋𝑡 )2. With the new meaning of 𝑋𝑡 , the regret is

Reg𝑛 = sup
𝑥∈𝐾

𝑛∑︁
𝑡=1

(
𝑓

(
𝑋𝑡

𝜋∧ (𝑋𝑡 )

)
− 𝑓 (𝑥)

)
.

By Proposition 3.22, 𝑓 (𝑥) = 𝑒(𝑥/𝜋∧ (𝑥)) ≤ 𝑒(𝑥) for all 𝑥 ∈ R𝑑 and 𝑒(𝑥) = 𝑓 (𝑥)
for all 𝑥 ∈ 𝐾𝜀 , which when combined with Proposition 3.13 shows that

Reg𝑛 ≤ 𝑛𝜀 + max
𝑥∈𝐾𝜀

𝑛∑︁
𝑡=1

(
𝑓

(
𝑋𝑡

𝜋∧ (𝑋𝑡 )

)
− 𝑓 (𝑥)

)
≤ 𝑛𝜀 + max

𝑥∈𝐾𝜀

𝑛∑︁
𝑡=1

(𝑒(𝑋𝑡 ) − 𝑒(𝑥)) .

Therefore the true regret is upper bounded in terms of the regret relative to the
extension.

Surrogate losses The algorithm makes use of a quadratic surrogate loss

𝑞𝑡 (𝑥) = ⟨𝑠′𝑡 (𝜇), 𝑥 − 𝜇𝑡 ⟩ +
1
4
∥𝑥 − 𝜇𝑡 ∥2

𝑠′′ (𝜇𝑡 ) , (10.7)
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where 𝑠𝑡 : R𝑑 → R is the convex surrogate defined by

𝑠𝑡 (𝑥) = E𝑡−1

[(
1 − 1

𝜆

)
𝑒(𝑋𝑡 ) +

1
𝜆
𝑒((1 − 𝜆)𝑋𝑡 + 𝜆𝑥)

]
with 𝜆 ∈ (0, 1

𝑑+1 ) a tuning parameter that determines the amount of smoothing.
We spend all of Chapter 12 on the intuitions and analysis of this surrogate loss.
You can skip ahead to that chapter now or accept the following properties as
gospel.

Proposition 10.7 Let 𝑞𝑡 be the function defined in (10.7) and suppose that
𝑥 ∈ R𝑑 satisfies 𝜆 ∥𝑥 − 𝜇𝑡 ∥Σ−1

𝑡
≤ 1√

𝐿
and 𝜆 ≤ 1

𝑑𝐿2 . Then,

E𝑡−1 [𝑒(𝑋𝑡 )] − 𝑒(𝑥) ≤ 𝑞𝑡 (𝜇) − 𝑞𝑡 (𝑥) +
4
𝜆

tr
(
𝑞′′𝑡 (𝜇𝑡 )Σ𝑡

)
+ 𝛿

[
2𝑑
𝜆

+ 1
𝜆2

]
.

Proof ( ) Note that 𝑞′′𝑡 (𝜇𝑡 ) = 𝑠′′𝑡 (𝜇𝑡 )/2. By Proposition 12.10,

E𝑡−1 [𝑒(𝑋𝑡 )] ≤ 𝑠𝑡 (𝜇𝑡 ) +
2
𝜆

tr(𝑠′′𝑡 (𝜇𝑡 )Σ𝑡 ) +
2𝑑𝛿
𝜆

.

And by Lemma 12.3(2), 𝑠𝑡 (𝑥) ≤ 𝑒(𝑥) for all 𝑥 ∈ R𝑑 . Hence, by Proposition 12.9,

E𝑡−1 [𝑒(𝑋𝑡 )] − 𝑒(𝑥) ≤ 𝑠𝑡 (𝜇𝑡 ) − 𝑠𝑡 (𝑥) +
4
𝜆

tr(𝑞′′𝑡 (𝜇𝑡 )Σ𝑡 ) +
2𝑑𝛿
𝜆

≤ 𝑞𝑡 (𝜇𝑡 ) − 𝑞𝑡 (𝑥) +
4
𝜆

tr(𝑞′′𝑡 (𝜇𝑡 )Σ𝑡 ) +
2𝑑𝛿
𝜆

+ 𝛿

𝜆2 . □

Estimation The function 𝑞𝑡 cannot be reconstructed from 𝑋𝑡 and 𝑌𝑡 alone. But
it can be estimated by

𝑞𝑡 (𝑥) = ⟨𝑔𝑡 , 𝑥 − 𝜇𝑡 ⟩ +
1
2
(𝑥 − 𝜇𝑡 )⊤𝐻𝑡 (𝑥 − 𝜇𝑡 ) ,

where 𝑔𝑡 and 𝐻𝑡 are defined by

𝑔𝑡 =
𝑅𝑡𝑌𝑡Σ

−1
𝑡 (𝑋𝑡 − 𝜇𝑡 )
(1 − 𝜆)2 and

𝐻𝑡 =
𝜆𝑅𝑡𝑌𝑡

2(1 − 𝜆)2

[
Σ−1
𝑡 (𝑋𝑡 − 𝜇𝑡 ) (𝑋𝑡 − 𝜇𝑡 )⊤Σ−1

𝑡

(1 − 𝜆)2 − Σ−1
𝑡

]
,

with 𝑝𝑡 the density of N (𝜇𝑡 , Σ𝑡 ) and

𝑅𝑡 =

𝑝𝑡

(
𝑋𝑡−𝜆𝜇

1−𝜆

)
(1 − 𝜆)𝑑 𝑝𝑡 (𝑋𝑡 )

.

By Proposition 12.14 E𝑡−1 [𝑔𝑡 ] = 𝑠′𝑡 (𝜇𝑡 ) = 𝑞′𝑡 (𝜇𝑡 ) and E𝑡−1 [𝐻𝑡 ] = 1
2 𝑠

′′
𝑡 (𝜇𝑡 ) =

𝑞′′𝑡 (𝜇𝑡 ).
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10.5 Algorithm and analysis

The algorithm combines online Newton step with the quadratic surrogate
estimates from Section 10.4.

1 args : 𝜂 , 𝜆 , 𝜎2 , 𝜀

2 𝜇1 = 0 , Σ1 = 𝜎21

3 f o r 𝑡 = 1 to 𝑛

4 sample 𝑋𝑡 from N (𝜇𝑡 , Σ𝑡 ) wi th d e n s i t y 𝑝𝑡

5 o b s e r v e 𝑌𝑡 = 𝜋∧ (𝑋𝑡 )
(
𝑓

(
𝑋𝑡

𝜋∧ (𝑋𝑡 )

)
+ 𝜀𝑡

)
+ 2(𝜋∧ (𝑋𝑡 )−1)

𝜀

6 l e t 𝑅𝑡 =
𝑝𝑡

(
𝑋𝑡 −𝜆𝜇𝑡

1−𝜆

)
(1−𝜆)𝑑 𝑝𝑡 (𝑋𝑡 )

7 compute 𝑔𝑡 =
𝑅𝑡𝑌𝑡Σ

−1
𝑡 (𝑋𝑡−𝜇𝑡 )
(1−𝜆)2

8 compute 𝐻𝑡 =
𝜆𝑅𝑡𝑌𝑡

2(1−𝜆)2

[
Σ−1
𝑡 (𝑋𝑡−𝜇𝑡 ) (𝑋𝑡−𝜇𝑡 )⊤Σ−1

𝑡

(1−𝜆)2 − Σ−1
𝑡

]
9 compute Σ−1

𝑡+1 = Σ−1
𝑡 + 𝜂𝐻𝑡

10 compute 𝜇𝑡+1 = arg min𝜇∈𝐾𝜀 ∥𝜇 − [𝜇𝑡 − 𝜂Σ𝑡+1𝑔𝑡 ] ∥Σ−1
𝑡+1

Algorithm 10.2: Online Newton step for convex bandits

Computation Algorithm 10.2 is straightforward to implement and relatively
efficient. The main computational bottlenecks are as follows:

◦ Gaussian sampling: The algorithm samples from a Gaussian with mean 𝜇𝑡
and covariance Σ𝑡 . Given access to standard Gaussian noise this more-or-less
corresponds to computing an eigenvalue decomposition of the covariance
matrix Σ𝑡 , which at least naively requires 𝑂 (𝑑3) operations per round.
Probably this can be improved with a careful incremental implementation.
See Note 10.vii.

◦ Minkowski functional: Remember that

𝜋∧ (𝑋𝑡 ) = max(1, 𝜋(𝑋𝑡 )/(1 − 𝜀)) .

This can be approximated to accuracy 1/𝑛2 using bisection search and only
logarithmically many queries to a membership oracle for 𝐾 . The increase in
regret due to the approximation is negligible.

◦ Projections: The projection in Line 10 is a convex optimisation problem
and the hardness depends on how 𝐾 is represented (Table 3.2). Note that the
projection is only needed in rounds 𝑡 where 𝜇𝑡 − 𝜂Σ𝑡+1𝑔𝑡 ∉ 𝐾𝜀 .
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The algorithm needs 𝑂̃ (𝑑2) memory to store the covariance matrix. There is
also the initial rounding procedure to put 𝐾 into a good position, which only
needs to be done once and is discussed in Section 3.6 and in the notes of this
chapter.

Theorem 10.8 Let 𝑀 = max(𝑑−1/2, 𝑀 (𝐾)) and

𝜎 =
1

𝑀
√

2𝑑
𝜆 =

1
4𝑑1.5𝑀𝐿2 𝜂 =

𝑑𝑀

3

√︂
1
𝑛

𝜀 =
240𝑑2𝑀𝐿4

√
𝑛

.

Under Assumption 10.1, with probability at least 1−𝛿 the regret of Algorithm 10.2
is bounded by

Reg𝑛 ≤ 480𝑑2𝑀𝐿4√𝑛 .

According to Table 10.1, if 𝐾/𝑑 is in Löwner’s position, then 𝑀 = 𝑂̃ (𝑑−1/2)
and the regret is 𝑂̃ (𝑑1.5√𝑛). The detailed proof of Theorem 10.8 is deferred to
Section 10.6, but we give an outline below.

Proof outline The rigorous proof depends on a relatively intricate concentra-
tion analysis, which we brush over.

Step 1: Regret comparison To begin, let 𝑥★ = arg min𝑥∈𝐾𝜀 𝑓 (𝑥) and

eReg𝑛 (𝑥★) =
𝑛∑︁
𝑡=1

(E𝑡−1 [𝑒(𝑋𝑡 )] − 𝑒(𝑥★)) .

The regret with respect to the quadratic surrogates and its estimates are

qReg𝑛 (𝑥★) =
𝑛∑︁
𝑡=1

(𝑞𝑡 (𝜇𝑡 ) − 𝑞𝑡 (𝑥★)) and

�qReg𝑛 (𝑥★) =
𝑛∑︁
𝑡=1

(𝑞𝑡 (𝜇𝑡 ) − 𝑞𝑡 (𝑥★)) .
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We start by comparing the true regret to the regret relative to the extended
losses:

Reg𝑛 ≤ 𝑛𝜀 +
𝑛∑︁
𝑡=1

( 𝑓 (𝑋𝑡/𝜋∧ (𝑋𝑡 )) − 𝑓 (𝑥★)) Proposition 3.13

whp

≲ 𝑛𝜀 +
𝑛∑︁
𝑡=1

(E𝑡−1 [ 𝑓 (𝑋𝑡/𝜋∧ (𝑋𝑡 ))] − 𝑓 (𝑥★)) Concentration

≤ 𝑛𝜀 +
𝑛∑︁
𝑡=1

(E𝑡−1 [𝑒(𝑋𝑡 )] − 𝑓 (𝑥★)) Proposition 3.22

= 𝑛𝜀 +
𝑛∑︁
𝑡=1

(E𝑡−1 [𝑒(𝑋𝑡 )] − 𝑒(𝑥★)) Proposition 3.22

= 𝑂̃

(
𝑀𝑑2√𝑛

)
+ eReg𝑛 (𝑥★) , (10.8)

where the final line follows from the definition of 𝜀. Therefore it suffices to
bound eReg𝑛 (𝑥★). The plan is to use Proposition 10.7 to compare the regrets
relative to the extension and the quadratic surrogates. A serious issue is that the
quadratic surrogate is only well-behaved on an ellipsoid about 𝜇𝑡 . Concretely,
we will need to show that with high probability

𝐹𝑡 ≜
1
2
∥𝜇𝑡 − 𝑥★∥2

Σ−1
𝑡

= 𝑂̃ (1/𝜆2) for all 1 ≤ 𝑡 ≤ 𝑛 .

Let 𝜏 be the first round where 𝐹𝜏+1 is not 𝑂̃ (1/𝜆2) with 𝜏 defined to be 𝑛 if no
such round exists. By Proposition 10.7, for any 𝑡 ≤ 𝜏

E𝑡−1 [𝑒(𝑋𝑡 )] − 𝑒(𝑥★) ≲ 𝑞𝑡 (𝜇𝑡 ) − 𝑞𝑡 (𝑥★) +
4
𝜆

tr(𝑞′′𝑡 (𝜇𝑡 )Σ𝑡 ) ,

where we ignored the final miniscule term in Proposition 10.7. Hence,

eReg𝜏 (𝑥★) ≲ qReg𝜏 (𝑥★) +
4
𝜆

𝑛∑︁
𝑡=1

tr(𝑞′′𝑡 (𝜇𝑡 )Σ𝑡 )

whp

≲ �qReg𝜏 (𝑥★) +
4
𝜆

𝑛∑︁
𝑡=1

tr(𝑞′′𝑡 (𝜇𝑡 )Σ𝑡 ) , (10.9)

where in the second inequality we used the fact that with high probability the
estimated quadratic losses are close cumulatively to the unobserved quadratic
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losses. By Theorem 10.2,

𝐹𝜏+1 ≤ 𝐹1 +
𝜂2

2

𝜏∑︁
𝑡=1

∥𝑔𝑡 ∥2
Σ𝑡

− 𝜂�qReg𝜏 (𝑥★)

≤ 2𝑑2

𝜎2 + 𝜂2

2

𝜏∑︁
𝑡=1

∥𝑔𝑡 ∥2
Σ𝑡

− 𝜂�qReg𝜏 (𝑥★)

whp

≲
2𝑑2

𝜎2 + 𝜂2

2

𝜏∑︁
𝑡=1

∥𝑔𝑡 ∥2
Σ𝑡

+ 4𝜂
𝜆

𝜏∑︁
𝑡=1

tr(𝑞′′𝑡 (𝜇𝑡 )Σ𝑡 ) − 𝜂eReg𝜏 (𝑥★) , (10.10)

where in the second inequality we used the assumption that 𝐾 ⊂ B𝑑2𝑑 and
𝜇1 = 0 to bound 𝐹1 = 1

2𝜎2 ∥𝑥 − 𝜇1∥2 ≤ 2𝑑2/𝜎2. The third inequality follows
from (10.9). There are two terms in the right-hand side that need a little more
manipulation, which we break out into two additional steps.

Step 2: Bounding gradient norms By definition

∥𝑔𝑡 ∥2
Σ𝑡

=
𝑅2
𝑡𝑌

2
𝑡

(1 − 𝜆)4 ∥𝑋𝑡 − 𝜇𝑡 ∥2
Σ−1
𝑡

whp

= 𝑂̃

(
𝑑𝑌2
𝑡

)
,

where we used the fact that 0 ≤ 𝑅𝑡 ≤ 3 (Lemma 12.16) and 𝜆 ∈ (0, 1/2) and
that Σ−1/2

𝑡 (𝑋𝑡 − 𝜇𝑡 ) is a standard Gaussian. Summing shows that

𝜂2

2

𝜏∑︁
𝑡=1

∥𝑔𝑡 ∥2
Σ𝑡

whp

= 𝑂̃

(
𝑑𝜂2

𝜏∑︁
𝑡=1

𝑌2
𝑡

)
.

We saw expressions like this in many other analyses and simply bounded 𝑌2
𝑡 ≤ 1.

But because we have used the extended loss this is not possible anymore.
Fortunately, one can prove that the algorithm mostly plays close to 𝐾𝜀 where
the extended loss and true losses are equal. A complex argument eventually
shows that with high probability

∑𝜏
𝑡=1𝑌

2
𝑡 = 𝑂̃ (𝑛).

Step 3: Bounding the trace term We claim the sum of traces in (10.10) is
bounded by

4
𝜆

𝜏∑︁
𝑡=1

tr(𝑞′′𝑡 (𝜇𝑡 )Σ𝑡 ) = 𝑂̃
(
𝑑

𝜆𝜂

)
. (10.11)

By definition E𝑠−1 [𝐻𝑠] = 𝑞′′𝑠 (𝜇𝑠) and therefore it is plausible (and true) that
with high probability

Σ−1
𝑡 = Σ−1

1 + 𝜂
𝑡−1∑︁
𝑠=1

𝐻𝑠 ≈ Σ−1
1 + 𝜂

𝑡−1∑︁
𝑠=1

𝑞′′𝑠 (𝜇𝑠) .
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Let us make a continuous time approximation, which often provides a good
ansatz for such problems. Let Σ̄(𝑡)−1 = Σ−1

1 +𝜂
∫ 𝑡

1 𝐻̄⌊𝑠⌋ d𝑠 where 𝐻̄𝑠 = 𝑞′′𝑠 (𝜇𝑠).
Then

𝜏∑︁
𝑡=1

tr(𝐻̄𝑡Σ𝑡 ) ≈
1
𝜂

∫ 𝜏

1
tr

(
d
d𝑡

(Σ̄(𝑡)−1)Σ̄(𝑡)
)

d𝑡

=
1
𝜂

∫ 𝜏

1

d
d𝑡

[− log det(Σ̄(𝑡))] d𝑡

=
1
𝜂

log det(Σ̄(1)Σ̄(𝜏)−1)

(★)
≤ 𝑑

𝜂
log

(
tr(Σ̄(1)Σ̄(𝜏)−1)

𝑑

)
whp

= 𝑂̃

(
𝑑

𝜂

)
,

where (★) follows from the arithmetic geometric mean inequality and the final
inequality follows by proving that ∥Σ̄(𝜏)−1∥ ≤ poly(𝑛, 𝑑) with high probability.
This justifies (10.11).

Step 4: Combining By the previous two steps and (10.10),

𝐹𝜏+1
whp

≲
2𝑑2

𝜎2 + 𝑂̃ (𝜂2𝑛𝑑) + 𝑂̃
(
𝑑

𝜆

)
− 𝜂eReg𝜏 (𝑥★)

= 𝑂̃ (1/𝜆2) − 𝜂eReg𝜏 (𝑥★) . (10.12)

Since eReg𝜏 (𝑥★) ≥ 0, this shows that 𝐹𝜏+1 = 𝑂̃ (1/𝜆2) and by the definition of
𝜏 this means that 𝜏 = 𝑛. (10.12) also shows that

eReg𝑛 (𝑥★) = 𝑂̃ (1/(𝜂𝜆2)) = 𝑂̃ (𝑀𝑑2√𝑛) ,

which when combined with (10.8) completes the argument. □

Remark 10.9 Looking at (10.12), you may wonder why not choose 𝜎 to
be very large. The reason is hidden in the calculations needed in the second
step. Consider the case that 𝑑 = 1 and 𝐾 = [−1, 1]. In the very first round
the algorithm samples 𝑋𝑡 ∼ N (0, 𝜎21) and therefore E[|𝑋1 |] ≈ 𝜎. Hence, if
𝜎 ≫ 1, then by the definition of the extended loss

E[𝑒(𝑋1)] = Ω

(𝜎
𝜀

)
≈ 𝜎

√
𝑛 .

So the regret in even a single round is Ω(𝜎
√
𝑛).
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10.6 Proof of Theorem 10.8

At various points we need that 𝜀 ∈ (0, 1/2), which only holds for sufficiently
large 𝑛. Note, however, that if 𝜀 ≥ 1/2, then the regret bound in the theorem
is implied by the assumption that 𝑓 ∈ ℱb so that Reg𝑛 ≤ 𝑛. Hence, for the
remainder we assume that 𝜀 ∈ (0, 1/2). The main complication is that the
conclusion of Proposition 10.7 only holds for some 𝑥 and the losses of the
extension of 𝑓 are very much not bounded in [0, 1]. At various points in the
analysis we refer to various relations between the constants. These are collected
in Section 10.8. Let

𝐹𝑡 =
1
2
∥𝜇𝑡 − 𝑥★∥2

Σ−1
𝑡

.

In order to make our analysis go through we need to argue that 𝐹𝑡 ≤ 1
2𝐿𝜆2 for

all 𝑡 with high probability. There are a few other complications. Most notably,
the algorithm is not properly defined if Σ𝑡 fails to be positive definite. Hence
we need to prove that this occurs with low probability. Note that E𝑡−1 [𝐻𝑡 ] is
the Hessian of a convex function and hence positive semidefinite. Thus we will
use concentration of measure to show that Σ𝑡 indeed stays positive definite with
high probability. Define the following quantities:

𝑆𝑡 =

𝑡∑︁
𝑢=1

𝐻𝑢 and 𝑆𝑡 =

𝑡∑︁
𝑢=1

E𝑢−1 [𝐻𝑢] and Σ̄−1
𝑡 = Σ−1

1 + 𝜂𝑆𝑡−1 .

We also let

qReg𝜏 (𝑥) =
𝜏∑︁
𝑡=1

(𝑞𝑡 (𝜇𝑡 ) − 𝑞𝑡 (𝑥)) and �qReg𝜏 (𝑥) =
𝜏∑︁
𝑡=1

(𝑞𝑡 (𝜇𝑡 ) − 𝑞𝑡 (𝑥)) .

Definition 10.10 Let 𝜏 be the first round when one of the following does not
hold:

(1) 𝐹𝜏+1 ≤ 1
2𝐿𝜆2 .

(2) Σ𝜏+1 is positive definite.
(3) 𝛿1 ⪯ 1

2 Σ̄
−1
𝜏+1 ⪯ Σ−1

𝜏+1 ⪯ 3
2 Σ̄

−1
𝜏+1 ⪯ 𝛿−11.

In case no such round exists, then 𝜏 is defined to be 𝑛.

Note that 𝐹𝑡+1 and Σ𝑡+1 are measurable with respect to ℱ𝑡 , which means that
𝜏 is a stopping time with respect to the filtration (ℱ𝑡 )𝑛𝑡=1. A simple consequence
of the definition of 𝜏 is that for any 𝑡 ≤ 𝜏,

∥Σ𝑡 ∥ ≤ 2∥Σ̄𝑡 ∥ = 2






( 1
𝜎21 + 𝜂𝑆𝑡

)−1





 ≤ 2𝜎2 , (10.13)
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where the last step follows because 𝑆𝑡 ∈ S𝑑+.

Step 1: Regret relative to the extension Most of our analysis bounds the regret
with respect to the extension of 𝑓 , which is only meaningful because the regret
relative to the extension is nearly an upper bound on the regret relative to the
real loss. Let 𝑥★ = arg min𝑥∈𝐾𝜀 𝑒(𝑥) and

eReg𝑛 =
𝑛∑︁
𝑡=1

E𝑡−1 [𝑒(𝑋𝑡 ) − 𝑒(𝑥★)] .

Let e0 be the event that
𝑛∑︁
𝑡=1

𝑓 (𝑋𝑡/𝜋∧ (𝑋𝑡 )) ≤
𝑛∑︁
𝑡=1

E𝑡−1 [ 𝑓 (𝑋𝑡/𝜋∧ (𝑋𝑡 ))] +
√︁

2𝑛 log(7/𝛿) ,

Since 𝑋𝑡/𝜋∧ (𝑋𝑡 ) ∈ 𝐾𝜀 ⊂ 𝐾 and 𝑓 ∈ ℱb, by Azuma’s inequality (Theorem B.18),
P(e0) ≥ 1 − 𝛿/7. Suppose the above high probability event occurs, then by
Proposition 3.13 and Proposition 3.22,

Reg𝑛 ≤ 𝑛𝜀 + max
𝑥∈𝐾𝜀

Reg𝑛 (𝑥)

≤ 𝑛𝜀 +
√︁

2𝑛 log(1/𝛿) + max
𝑥∈𝐾𝜀

𝑛∑︁
𝑡=1

E𝑡−1 [ 𝑓 (𝑋𝑡/𝜋∧ (𝑋𝑡 )) − 𝑓 (𝑥)]

≤ 𝑛𝜀 +
√︁

2𝑛 log(1/𝛿) + max
𝑥∈𝐾𝜀

𝑛∑︁
𝑡=1

E𝑡−1 [𝑒(𝑋𝑡 ) − 𝑒(𝑥)]

= 𝑛𝜀 +
√︁

2𝑛 log(1/𝛿) + eReg𝑛 . (10.14)

Therefore it suffices to bound eReg𝑛.

Step 2: Concentration We need to show that the behaviour of the various
estimators used by Algorithm 10.2 is suitably regular with high probability.
Define an event e1 by

e1 =

{
max

1≤𝑡≤𝜏
|𝜀𝑡 | ≤

√︁
log(14𝑛/𝛿)

}
. (e1)

By Lemma B.3 and a union bound, P(e1) ≥ 1 − 𝛿/7. The magnitude of the
observed losses depends heavily on 𝜋(𝑋𝑡 ). Define an event e2 by

e2 =

{
max

1≤𝑡≤𝜏
𝜋(𝑋𝑡 ) ≤

√
𝐿

}
. (e2)

Lemma 10.11 P(e2) ≥ 1 − 𝛿/7.
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Proof By Lemma 10.5 and a union bound, with probability at least 1 − 𝛿/7
for all 𝑡 ≤ 𝜏.

𝜋(𝑋𝑡 ) ≤ E𝑡−1 [𝜋(𝑋𝑡 )] +
√︁

2 ∥Σ𝑡 ∥ log(14𝑛/𝛿) by Lemma 10.5(2)

≤ 1 + 𝑀
√︁
𝑑 ∥Σ𝑡 ∥ +

√︁
2 ∥Σ𝑡 ∥ log(14𝑛/𝛿) by Lemma 10.5(1)

≤ 1 + 𝜎𝑀
√

2𝑑 + 2𝜎
√︁

log(14𝑛/𝛿) by (10.13)

≤
√
𝐿 .

where the final inequality holds by the definition of the constants, which satisfy
𝜎 ≤ 𝜎𝑀

√
2𝑑 ≤ 1. □

We also need to control the magnitude of ∥𝑋𝑡 − 𝜇𝑡 ∥Σ−1
𝑡

. Define an event e3 by

e3 =

{
max

1≤𝑡≤𝜏
∥𝑋𝑡 − 𝜇𝑡 ∥Σ−1

𝑡
≤

√︂
8𝑑
3

log(14𝑛/𝛿)
}
. (e3)

By Lemma B.3 and Proposition B.12, P(e3) ≥ 1− 𝛿/7. The next lemma bounds
the sum

∑𝜏
𝑡=1 E𝑡−1 [𝑌2

𝑡 ]. Because the extended loss matches the true loss on
𝐾𝜀 and the latter is bounded in [0, 1], we should expect that when 𝑋𝑡 ∈ 𝐾𝜀 ,
then 𝑌𝑡 = 𝑂̃ (1) with high probability. In other words, provided the algorithm is
playing mostly in 𝐾𝜀 , then we should hope that

∑𝜏
𝑡=1 E𝑡−1 [𝑌2

𝑡 ] = 𝑂̃ (𝑛). This is
exactly what the lemma says. The proof is deferred to Section 10.7 but should
not skipped.

Lemma 10.12 Let 𝑌max = max1≤𝑡≤𝜏 ( |𝑌𝑡 | + E𝑡−1 [|𝑌𝑡 |]). On e1 ∩ e2 ∩ e3 the
following hold:

(1) 𝑌max ≤ 𝐿
𝜀

.

(2)
∑𝜏
𝑡=1 E𝑡−1 [𝑌2

𝑡 ] ≤ 10𝑛.

We also need to control
∑𝜏
𝑡=1𝑌

2
𝑡 . Let e4 be the event defined by

e4 =

{
𝜏∑︁
𝑡=1

𝑌2
𝑡 ≤ 21𝑛

}
. (e4)

Lemma 10.13 P(e4 ∪ (e1 ∩ e2 ∩ e3)𝑐) ≥ 1 − 𝛿/7.

Proof Let 𝐸𝑡 = {|𝑌𝑡 | ≤ 𝐿/𝜀}. By Theorem B.21, with probability at least
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1 − 𝛿/7,

𝜏∑︁
𝑡=1

1𝐸𝑡𝑌
2
𝑡

(a)

≤ 2
𝜏∑︁
𝑡=1

E𝑡−1 [1𝐸𝑡𝑌2
𝑡 ] +

𝐿2 log(7/𝛿)
𝜀2

(b)

≤ 2
𝜏∑︁
𝑡=1

E𝑡−1 [𝑌2
𝑡 ] +

𝐿3

𝜀2

(c)

≤ 𝑛 + 2
𝜏∑︁
𝑡=1

E𝑡−1 [𝑌2
𝑡 ] .

where (a) follows from Theorem B.21, (b) by the definition of 𝐿 and (c)
by Table 10.2.a. By Lemma 10.12, on e1 ∩ e2 ∩ e3, 𝐸𝑡 holds for all 𝑡 ≤ 𝜏

and in this case
∑𝜏
𝑡=1 1𝐸𝑡𝑌

2
𝑡 =

∑𝜏
𝑡=1𝑌

2
𝑡 and

∑𝜏
𝑡=1 E𝑡−1 [𝑌2

𝑡 ] ≤ 10𝑛. Hence,
P(e4 ∪ (e1 ∩ e2 ∩ e3)𝑐) ≥ 1 − 𝛿/7. □

The last two events control the concentration of the estimated quadratic
surrogate about its mean at the optimal point and the concentration of the
Hessian estimates. Let e5 be the event that

e5 =

{
qReg𝜏 (𝑥★) ≤ �qReg𝜏 (𝑥★) +

4
√
𝑛𝐿

𝜆

}
(e5)

Lemma 10.14 P(e5 ∪ (e1 ∩ e2 ∩ e3 ∩ e4)𝑐) ≥ 1 − 𝛿/7.

Proof By the definition of 𝜏, for all 𝑡 ≤ 𝜏,

𝜆∥𝜇𝑡 − 𝑥★∥Σ−1
𝑡

≤ 1
√
𝐿
.

Hence, by Proposition 12.24(1), with probability at least 1 − 𝛿/7,

𝜏∑︁
𝑡=1

(𝑞𝑡 (𝑥★) − 𝑞𝑡 (𝑥★)) ≤ 1 + 1
𝜆


√√

𝜏∑︁
𝑡=1

E𝑡−1 [𝑌2
𝑡 ]𝐿 + 𝑌max𝐿

 . (10.15)
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On this event and e1 ∩ e2 ∩ e3,

qReg𝜏 (𝑥★) − �qReg𝜏 (𝑥★) =
𝜏∑︁
𝑡=1

(𝑞𝑡 (𝜇𝑡 ) − 𝑞𝑡 (𝑥★)) −
𝜏∑︁
𝑡=1

(𝑞𝑡 (𝜇𝑡 ) − 𝑞𝑡 (𝑥★))

(a)

=

𝜏∑︁
𝑡=1

(𝑞𝑡 (𝑥★) − 𝑞𝑡 (𝑥★))

(b)

≤ 1 + 1
𝜆


√√

𝜏∑︁
𝑡=1

E𝑡−1 [𝑌2
𝑡 ]𝐿 + 𝑌max𝐿


(c)

≤ 1 + 1
𝜆

[√
10𝑛𝐿 + 𝐿2

𝜀

]
(d)

≤ 4
𝜆

√
𝑛𝐿 ,

where (a) holds because 𝑞𝑡 (𝜇𝑡 ) = 𝑞𝑡 (𝜇𝑡 ) = 0, (b) from (10.15), (c) from
Lemma 10.12(1)(2) and (d) by naive simplification. □

Finally, let e6 be the event that

e6 =

{
−6𝜆𝐿2√𝑑𝑛Σ̄−1

𝜏 ⪯ 𝑆𝜏 − 𝑆𝜏 ⪯ 6𝜆𝐿2√𝑑𝑛Σ̄−1
𝜏

}
. (e6)

Lemma 10.15 P(e6 ∪ (e1 ∩ e2 ∩ e3 ∩ e4)𝑐) ≥ 1 − 𝛿/7.

Proof By Proposition 12.27 with Σ−1 = 3
2 Σ̄

−1
𝜏 , with probability at least 1−𝛿/7,

𝑆𝜏 − 𝑆𝜏 ⪯ 𝜆𝐿2
1 +

√√
𝑑

𝜏∑︁
𝑡=1

E𝑡−1 [𝑌2
𝑡 ] + 𝑑2𝑌max


3
2
Σ̄−1
𝜏 and

𝑆𝜏 − 𝑆𝜏 ⪯ 𝜆𝐿2
1 +

√√
𝑑

𝜏∑︁
𝑡=1

E𝑡−1 [𝑌2
𝑡 ] + 𝑑2𝑌max


3
2
Σ̄−1
𝜏 .

As before the claim follows from Lemma 10.12(2)(1) and the Table 10.2.b,
which says that 𝑑2𝐿

𝜀
≤ 1
𝐿

√
𝑑𝑛. □

Let 𝐸 = e0∩ e1∩ e2∩ e3∩ e4∩ e5∩ e6 be the intersection of all these high
probability events. A union bound over all the calculations above shows that
P(𝐸) ≥ 1 − 𝛿. For the remainder of the proof we bound the regret on 𝐸 .

Step 3: Simple bounds We can now make some elementary conclusions that
hold on the intersection of all the high probability events outlined in the previous
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step. To begin, by Lemma 10.12(2),
𝜏∑︁
𝑡=1

∥𝑔𝑡 ∥2
Σ𝑡

=

𝜏∑︁
𝑡=1





𝑅𝑡𝑌𝑡Σ−1
𝑡 (𝑋𝑡 − 𝜇𝑡 )
(1 − 𝜆)2





2

Σ𝑡

≤
(
𝜏∑︁
𝑡=1

𝑌2
𝑡

)
max

1≤𝑡≤𝜏

(
𝑅𝑡𝑌𝑡

(1 − 𝜆)2

)2
∥𝑋𝑡 − 𝜇𝑡 ∥2

Σ−1
𝑡

≤ 𝑑𝑛𝐿 , (10.16)

where in the last inequality we combined e3 to bound the norm and e4 to bound
the sum of squared losses and Lemma 12.16 to bound 0 ≤ 𝑅𝑡 ≤ 3 and that
𝜆 ≤ 1

2 . By the definition of e6,

Σ−1
𝜏+1 = Σ−1

1 + 𝜂𝑆𝜏 ⪯ Σ−1
1 + 𝜂𝑆𝜏 + 6𝜂𝜆𝐿2√𝑑𝑛Σ̄−1

𝜏 ⪯ 3
2
Σ̄−1
𝜏+1 ,

where the final inequality follows from the definitions of 𝜂 and 𝜆 Table 10.2.c
and because Σ̄−1

𝜏 ⪯ Σ̄−1
𝜏+1. Similarly,

Σ−1
𝜏+1 ⪰ Σ−1

1 + 𝜂𝑆𝜏 −
1
2
Σ̄−1
𝜏 = Σ̄−1

𝜏+1 −
1
2
Σ̄−1
𝜏 ⪰ 1

2
Σ̄−1
𝜏+1 .

Combining shows that

1
2
Σ̄−1
𝜏+1 ⪯ Σ−1

𝜏+1 ⪯ 3
2
Σ̄−1
𝜏+1 . (10.17)

We also want to show that 2𝛿1 ⪯ Σ̄−1
𝜏+1 ⪯ 2

3𝛿1. The left-hand inequality is
immediate because Σ̄𝜏+1 ⪯ Σ̄1 = 𝜎21 ⪯ 1

2𝛿1. By Proposition 12.6, for any
𝑡 ≤ 𝜏,

∥E𝑡−1 [𝐻𝑡 ] ∥ =
1
2



𝑠′′𝑡 (𝜇𝑡 )


≤ 𝜆 lip(𝑒)

2(1 − 𝜆)

√︃
𝑑


Σ−1
𝑡




≤ 𝜆 lip(𝑒)

2(1 − 𝜆)

√︂
3𝑑
2



Σ̄−1
𝑡




≤ 𝜆 lip(𝑒)

2(1 − 𝜆)

√︂
3𝑑
2𝛿

.

Therefore, by ensuring that 𝛿 = 𝑂 (1/poly(𝑛, 𝑑)) is small enough and bounding
lip(𝑒) = 𝑂 (1/𝜀) using Proposition 3.22,

Σ̄𝜏+1



 = 




Σ̄−1
1 + 𝜂

𝜏∑︁
𝑢=1

𝐻̄𝑢






 ≤ 

Σ̄−1
1



 + 𝜂𝑛𝜆 lip(𝑒)
2(1 − 𝜆)

√︂
3𝑑
2𝛿

≤ 1
𝛿
. (10.18)
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Therefore both Definition 10.10(2) and Definition 10.10(3) hold and so the
only way that 𝜏 ≠ 𝑛 is if 𝐹𝜏+1 >

1
2𝐿𝜆2 .

Step 4: Trace/Logdet inequalities Online Newton step bounds the regret
relative to the estimated quadratic surrogate losses, which are close to the true
quadratic losses. The regret relative to the extension can be bounded in terms of
the regret relative to quadratic surrogates:

Lemma 10.16 On event 𝐸 , eReg𝜏 (𝑥★) ≤ qReg𝜏 (𝑥★) +
𝑑𝐿

𝜆𝜂
.

Proof By the definition of 𝜏, for 𝑡 ≤ 𝜏 it holds that 𝜆 ∥𝜇𝑡 − 𝑥★∥Σ−1
𝑡

≤ 1√
𝐿

.
Hence, by Proposition 10.7,

eReg𝜏 (𝑥★) ≤ qReg𝜏 (𝑥★) +
4
𝜆

𝜏∑︁
𝑡=1

tr(𝑞′′𝑡 (𝜇𝑡 )Σ𝑡 ) + 1 . (10.19)

By Proposition 12.6 and Proposition 3.22, for any 𝑡 ≤ 𝜏,

𝜂




Σ1/2
𝑡 𝑞′′𝑡 (𝜇𝑡 )Σ

1/2
𝑡




 ≤ 𝜂𝜆 lip(𝑒)
2(1 − 𝜆)

√︁
𝑑 ∥Σ𝑡 ∥ ≤

2𝜂𝜆𝜎
√

2𝑑
𝜀(1 − 𝜆) ≤ 1 , (10.20)

where in the second last inequality we used (10.13) to bound ∥Σ𝑡 ∥ ≤ 2𝜎2 and
Proposition 3.22 and the assumption thatB𝑑1 ⊂ 𝐾 to bound lip(𝑒) ≤ 2

𝜀 (1−𝜀) ≤
4
𝜀

.
The final inequality holds because of the choice of 𝜆, 𝜂 and 𝜀 Table 10.2.d.
Hence, by Lemma A.9,

4
𝜆

𝜏∑︁
𝑡=1

tr(𝑞′′𝑡 (𝜇𝑡 )Σ𝑡 )
(a)

≤ 16
𝜆𝜂

𝜏∑︁
𝑡=1

log det
(
1 +

𝜂𝑞′′𝑡 (𝜇𝑡 )Σ𝑡
2

)
(b)

≤ 16
𝜆𝜂

𝜏∑︁
𝑡=1

log det
(
1 + 𝜂𝑞′′𝑡 (𝜇𝑡 )Σ̄𝑡

)
=

16
𝜆𝜂

𝜏∑︁
𝑡=1

log det
(
Σ̄𝑡 Σ̄

−1
𝑡+1

)
=

16
𝜆𝜂

log det
(
1 + 𝜂𝜎2𝑆𝜏

)
(c)

≤ 16
𝜆𝜂

log det
(
[1 + 𝜎2/𝛿]1

)
(d)

≤ 𝑑𝐿

𝜆𝜂
− 1 , (10.21)

where (a) follows from Lemma A.9 and (10.20), (b) because for 𝑡 ≤ 𝜏,
Σ𝑡 ≤ 2Σ̄𝑡 , (c) follows from (10.18) and because 𝜂𝑆𝜏 ⪯ Σ̄−1

𝜏+1. Lastly, (d) holds
by the definition of 𝐿. The claim of the lemma now follows from (10.19). □
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Step 5: Regret By (10.17), for any 𝑡 ≤ 𝜏,

∥𝑔𝑡 ∥2
Σ𝑡+1

≤ 2 ∥𝑔𝑡 ∥2
Σ̄𝑡+1

≤ 2 ∥𝑔𝑡 ∥2
Σ̄𝑡

≤ 3 ∥𝑔𝑡 ∥2
Σ𝑡
. (10.22)

By Theorem 10.2 and the bounds in (10.16) and (e5),

𝐹𝜏+1 =
1
2
∥𝑥★ − 𝜇𝜏+1∥2

Σ−1
𝜏+1

(a)

≤ ∥𝑥★∥2

2𝜎2 + 𝜂2

2

𝜏∑︁
𝑡=1

∥𝑔𝑡 ∥2
Σ𝑡+1

− 𝜂�qReg𝜏 (𝑥★)

(b)

≤ ∥𝑥★∥2

2𝜎2 + 3𝜂2𝑛𝑑𝐿

2
− 𝜂�qReg𝜏 (𝑥★)

(c)

≤ ∥𝑥★∥2

2𝜎2 + 3𝜂2𝑛𝑑𝐿

2
+ 4𝜂

√
𝑛𝐿

𝜆
− 𝜂qReg𝜏 (𝑥★)

(d)

≤ ∥𝑥★∥2

2𝜎2 + 3𝜂2𝑛𝑑𝐿

2
+ 𝑑𝐿

𝜆
+ 4𝜂

√
𝑛𝐿

𝜆
− 𝜂eReg𝜏

(e)

≤ 2𝑑2

𝜎2 + 3𝜂2𝑛𝑑𝐿

2
+ 𝑑𝐿

𝜆
+ 4𝜂

√
𝑛𝐿

𝜆
− 𝜂eReg𝜏

(f)

≤ 1
2𝐿𝜆2 − 𝜂eReg𝜏 ,

where (a) follows from Theorem 10.2, (b) from (10.16) and (10.22), (c)
holds on event e5, (d) from Lemma 10.16. (e) follows because we assumed
that 𝐾 ⊂ B𝑑2𝑑 . Lastly, (f) follows by substituting the definition of the constants
Table 10.2.e. Therefore all of the following hold:

(1) 𝐹𝜏+1 ≤ 1
2𝐿𝜆2 .

(2) eReg𝜏 ≤ 1
2𝐿𝜂𝜆2 .

(3) Σ𝜏+1 is positive definite and 𝛿1 ⪯ 1
2 Σ̄

−1
𝜏+1 ⪯ Σ−1

𝜏+1 ⪯ 3
2 Σ̄

−1
𝜏+1 ⪯ 𝛿−11.

By Definition 10.10, on this event we have 𝜏 = 𝑛 and hence eReg𝑛 ≤ 1
2𝐿𝜂𝜆2 .

The result follows from the definitions of 𝜂 and 𝜆 and (10.14).
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10.7 Proof of Lemma 10.12

Part (1) is an immediate consequence of the definitions. Let 𝑡 ≤ 𝜏. Then, on e1
and e2,

|𝑌𝑡 | = |𝑒(𝑋𝑡 ) + 𝜋∧ (𝑋𝑡 )𝜀𝑡 |

=

����𝜋∧ (𝑋𝑡 ) 𝑓
(

𝑋𝑡

𝜋∧ (𝑋𝑡 )

)
+ 2(𝜋∧ (𝑋𝑡 ) − 1)

𝜀
+ 𝜋∧ (𝑋𝑡 )𝜀𝑡

����
≤ 𝐿

2𝜀
, (10.23)

where in the final inequality we used the definitions of e1 and e2 and the
definition 𝜋∧ (𝑋𝑡 ) = max(1, 𝜋(𝑋𝑡 )/(1 + 𝜀)). The expectation is bounded by

E𝑡−1 [|𝑌𝑡 |] = E𝑡−1

[����𝜋∧ (𝑋𝑡 ) 𝑓
(

𝑋𝑡

𝜋∧ (𝑋𝑡 )

)
+ 2(𝜋∧ (𝑋𝑡 ) − 1)

𝜀
+ 𝜋∧ (𝑋𝑡 )𝜀𝑡

����]
(a)

≤ 2
𝜀
E𝑡−1 [𝜋∧ (𝑋𝑡 )] + E𝑡−1 [|𝜋∧ (𝑋𝑡 )𝜀𝑡 |]

(b)

≤ 3
𝜀
E𝑡−1 [𝜋∧ (𝑋𝑡 )]

(c)

≤ 3
𝜀

(
1 + 𝜎𝑀

√
2𝑑

)
(d)

≤ 𝐿

2𝜀
, (10.24)

where (a) follows because 𝑓 ∈ ℱb is bounded. (b) holds because
E𝑡−1 [|𝜀𝑡 | |𝑋𝑡 ] ≤ 1 and naively bounding 1 ≤ 1/𝜀. (c) follows from
Lemma 10.5 and because ∥Σ𝑡 ∥ ≤ 2𝜎2 by (10.13). Lastly, (d) is true because
𝜎𝑀

√
𝑑 ≤ 1. Combining (10.23) and (10.24) completes the proof of part (1).

Part (2) is more interesting. The main point is that under e1, e2, e3 the only
way that 𝑌𝑡 can be large is if 𝑋𝑡 is far outside of 𝐾𝜀 . By the definition of the
algorithm 𝜇𝑡 ∈ 𝐾𝜀 , which means that for 𝑋𝑡 to be large the covariance Σ𝑡

must also be relatively large. But because Σ−1
𝑡 increases with curvature and

the extended loss function has considerable curvature near 𝜕𝐾𝜀 , we should
expect that as the algorithm plays outside 𝐾𝜀 the covariance Σ𝑡 will decrease
and hence 𝑋𝑡 gets closer to 𝐾𝜀 and 𝑌𝑡 = 𝑂̃ (1). Recall that 𝑣(𝑥) = 𝜋∧ (𝑥) − 1
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and 𝑣 𝜚 = 𝑣 ∗ 𝜙𝜚 where 𝜙𝜚 is the smoothing kernel from Section 3.8. Then,

𝜏∑︁
𝑡=1

E𝑡−1 [𝑌2
𝑡 ] =

𝜏∑︁
𝑡=1

E𝑡−1

[(
𝜋∧ (𝑋𝑡 ) ( 𝑓 (𝑋𝑡/𝜋∧ (𝑋𝑡 )) + 𝜀𝑡 ) +

2𝑣(𝑋𝑡 )
𝜀

)2
]

(a)

≤
𝜏∑︁
𝑡=1

E𝑡−1

[
4𝜋∧ (𝑋𝑡 )2 + 8𝑣(𝑋𝑡 )2

𝜀2

]
(b)

≤
𝜏∑︁
𝑡=1

E𝑡−1

[
8 + 10𝑣(𝑋𝑡 )2

𝜀2

]
(c)

≤ 8𝑛 + 10
𝜀2

𝜏∑︁
𝑡=1

𝐿

(
1 + 𝑀

√︁
𝑑∥Σ𝑡 ∥

)
tr

(
Σ𝑡 lim

𝜚→0
E𝑡−1 [𝑣′′𝜚 (𝑋𝑡 )]

)
(d)

≤ 8𝑛 + 20𝐿
𝜀2

𝜏∑︁
𝑡=1

tr
(
Σ𝑡 lim

𝜚→0
E𝑡−1 [𝑣′′𝜚 (𝑋𝑡 )]

)
(e)

≤ 9𝑛 + 80𝐿
𝜆𝜀

𝜏∑︁
𝑡=1

tr
(
Σ𝑡𝑞

′′
𝑡 (𝜇𝑡 )

)
(f)

≤ 9𝑛 + 20𝑑𝐿2

𝜆𝜂𝜀
(g)

≤ 10𝑛 .

where (a) uses that (𝑎+𝑏)2 ≤ 2𝑎2+2𝑏2 and the assumption that 𝜀𝑡 subgaussian
under P𝑡−1 (·|𝑋𝑡 ) so that E𝑡−1 [( 𝑓 (𝑋𝑡/𝜋∧ (𝑋𝑡 )) + 𝜀𝑡 )2 |𝑋𝑡 ] ≤ 2. (b) uses that
𝜀 ≤ 1/2 and again that (𝑎 + 𝑏)2 ≤ 2𝑎2 + 2𝑏2. (c) from Lemma 10.6. (d)
follows from (10.13) to bound ∥Σ𝑡 ∥ ≤ 2𝜎2 and the definition of the constraints
Table 10.2.f. (f) follows from (10.21) and (g) uses the definition of the
constants again Table 10.2.g. It remains to justify (e). Recall that

𝑒(𝑥) =
[
𝜋∧ (𝑥) 𝑓

(
𝑥

𝜋∧ (𝑥)

)
+ 𝑣(𝑥)

𝜀

]
+ 𝑣(𝑥)

𝜀
≜ ℎ(𝑥) + 𝑣(𝑥)

𝜀
.

Now ℎ is convex by Proposition 3.22 and lip(ℎ) < ∞ and hence by Proposi-
tion 3.23 and Proposition 12.8 and Table 10.2.h,

tr(Σ𝑡𝑞′′ (𝜇𝑡 )) =
1
2

tr(Σ𝑡 𝑠′′ (𝜇𝑡 ))

≥ 𝜆

4
tr

(
Σ𝑡 lim

𝜚→0
E𝑡−1

[
𝑒′′𝜚 (𝑋𝑡 )

] )
− 𝛿𝑑

2

≥ 𝜆

4𝜀
tr

(
Σ𝑡 lim

𝜚→0
E𝑡−1

[
𝑣′′𝜚 (𝑋𝑡 )

] )
− 𝛿𝑑

2
,
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where the last inequality holds because 𝑒′′𝜚 (𝑥) = ℎ′′𝜚 (𝑥) + 1
𝜀
𝑣′′𝜚 (𝑥) ⪰ 1

𝜀
𝑣′′𝜚 (𝑥).

Rearranging shows that

tr
(
Σ𝑡 lim

𝜚→0
E𝑡−1

[
𝑣′′𝜚 (𝑋𝑡 )

] )
≤ 4𝜀
𝜆

tr
(
Σ𝑡𝑞

′′
𝑡 (𝜇𝑡 )

)
+ 2𝜀𝛿𝑑

𝜆
,

which by naively bounding the terms involving 𝛿 suffices to establish (e).

10.8 Constraints

Most bandit algorithms are fairly straightforward to tune as we saw in Chap-
ters 5 and 6. Regrettably the parameters of Algorithm 10.2 interact in a more
complicated way. The constraints needed for the analysis are as follows:

10.2.a 𝐿3

𝜀2 ≤ 𝑛 10.2.b 𝑑2𝐿
𝜀

≤ 1
𝐿

√
𝑑𝑛

10.2.c 6𝜂𝜆𝐿2√𝑑𝑛 ≤ 1
2 10.2.d 2𝜎𝜂𝜆

𝜀 (1−𝜆)
√

2𝑑 ≤ 1

10.2.e 2𝑑2

𝜎2 + 3𝜂2𝑛𝑑𝐿
2 + 𝑑𝐿

𝜆
+ 4𝜂

√
𝑛𝐿

𝜆
≤ 1

2𝐿𝜆2 10.2.f 𝜎𝑀
√

2𝑑 ≤ 1

10.2.g 20𝑑𝐿2

𝜆𝜂𝜀
≤ 𝑛 10.2.h 𝜆 ≤ 1

𝑑𝐿2

Table 10.2: Constraints on the constants needed in the analysis of Algorithm 10.2.

You can check (laboriously) that the constants defined by

𝜎 =
1

𝑀
√

2𝑑
𝜆 =

1
4𝑑1.5𝑀𝐿2 𝜂 =

𝑑𝑀

3

√︂
1
𝑛

𝜀 =
240𝑑2𝑀𝐿4

√
𝑛

satisfy all of the above constraints.

10.9 Notes

10.i: Let us collect some notes on the tradeoffs between the various positions.

◦ Löwner’s position yields a regret of 𝑂̃ (𝑑1.5√𝑛) for any 𝐾. But in general
it can only be computed efficiently when 𝐾 is the convex hull of a small
number of vertices.

◦ Isotropic positions yields 𝑂̃ (𝑑2√𝑛) regret for any 𝐾 and can be computed
relatively efficiently when 𝐾 is given by a separation or membership oracle.
The bound improves to 𝑂̃ (𝑑1.9√𝑛) when 𝐾 is symmetric.
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◦ John’s position yields 𝑂̃ (𝑑2√𝑛) regret for any 𝐾 and can be computed
efficiently when 𝐾 is a polytope represented by the intersection of half-
spaces. When 𝐾 is symmetric, the regret improves to 𝑂̃ (𝑑1.5√𝑛).

◦ When the polar of 𝐾 is isotropic, then the regret is 𝑂̃ (𝑑1.75√𝑛) in general
and 𝑂̃ (𝑑1.5√𝑛) when 𝐾 is symmetric. Positioning 𝐾 such that the polar is
isotropic is quite delicate and is discussed in detail in 10.iii below.

10.ii: No scaling of John’s position yields the same uniform bound on
𝑀 (𝐾) as Löwner’s position. Let 𝐾 be such that 𝐾◦ = B𝑑1 ∩ {𝑢 : 𝑢1 ≥ −1/𝑑},
which is the convex body formed as the intersection of the unit ball and a
half-space. Theorem 9.26 shows that 𝐾◦ is in Löwner’s position and therefore
𝐾 is in John’s position. But 𝑀 (𝐾) ≥ 1

2 is obvious and yet −𝑑𝑒1 ∈ 𝐾 holds
since sup𝑢∈𝐾◦ ⟨−𝑑𝑒1, 𝑢⟩ = 1. Therefore max𝑥∈𝐾 ∥𝑥∥ ≥ 𝑑. Since for 𝛾 > 0,
𝑀 (𝛾𝐾) = 1

𝛾
𝑀 (𝐾),

𝑀 (𝛾𝐾) max
𝑥∈𝛾𝐾

∥𝑥∥ ≥ 𝑑

2
for all 𝛾 ∈ (0,∞) .

Therefore every scaling of 𝐾 such that diam(𝐾) = 𝑂 (𝑑) has 𝑀 (𝐾) = Ω(1).
This suggests the following problem:

Exercise 10.17 ⋆⋆⋆�? Does there exist a polynomial time algorithm for
positioning the constraint set such that B𝑑1 ⊂ 𝐾 ⊂ B𝑑2𝑑 and 𝑀 (𝐾) = 𝑂̃ (𝑑−1/2)
when:
◦ 𝐾 = {𝑥 : 𝐴𝑥 ≤ 𝑏} is a polytope.
◦ 𝐾 is given by a separation or membership oracle.

10.iii: The existence and computation of an affine map 𝑇 such that (𝑇𝐾)◦
is isotropic is quite interesting. Let

cen(𝐾) = 1
vol(𝐾)

∫
𝐾

𝑥 d𝑥 and

cov(𝐾) = 1
vol(𝐾)

∫
𝐾

(𝑥 − cen(𝐾)) (𝑥 − cen(𝐾))⊤ d𝑥 .

We want to find an affine map 𝑇 such that cen((𝑇𝐾)◦) = 0 and cov((𝑇𝐾)◦) = 1.
An elementary calculation shows that (𝐴𝐾)◦ = 𝐴−1𝐾◦ for positive definite 𝐴.
The behaviour of 𝑥 ↦→ (𝐾 − 𝑥)◦, however, is more complicated. Nevertheless,
there exists an 𝑠 ∈ int(𝐾) called the Santálo point such that cen((𝐾 − 𝑠)◦) = 0

as explained by Schneider (2013). Meyer and Werner (1998) show that 𝑥 ↦→
vol((𝐾 − 𝑥)◦) is strictly convex on the interior of 𝐾 and the minimiser of this
function is the Santálo point (Santaló, 1949). Hence, letting 𝑠 be the Santálo
point of 𝐾 and 𝐴 = cov((𝐾 − 𝑠)◦)1/2 and 𝑇𝑥 = 𝐴𝑥 − 𝐴𝑠 it follows that (𝑇𝐾)◦
is isotropic. Regarding computation, given 𝑥 ∈ int(𝐾) it is possible in principle
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to estimate vol((𝐾 − 𝑥)◦) by sampling and hence use zeroth-order convex
optimisation to find the Santálo point. Once 𝑠 has been found, the matrix 𝐴 can
be estimated by sampling from (𝐾 − 𝑠)◦. A reasonable guess is that a suitable
approximation of 𝑇 can be found in polynomial time using this procedure, but
the devil is in the details of the approximation errors:

Exercise 10.18 ⋆⋆⋆�? Suppose that 𝐾 is a polytope or represented by a
separation oracle. Does there exist a polynomial time algorithm to position 𝐾
so that 𝐾◦ is approximately isotropic with errors small enough that the relevant
results in Table 10.1 hold (approximately). The problem is studied when 𝑑 = 2
by Kaiser (1993).

10.iv: Online Newton step was originally designed for full information online
convex optimisation (Hazan et al., 2007). Its use as an algorithm for driving
bandit convex optimisation methods has been developed by a number of authors.
Suggala et al. (2021, 2024) study the quadratic and near-quadratic settings,
while Lattimore and György (2023) considered Lipschitz convex functions in
the unconstrained setting. The algorithm and analysis in this chapter follows the
work by Fokkema et al. (2024).

10.v: You should be a little unhappy about the non-specific constants in
Theorem 10.8. How can you run the algorithm if the constants depend on
universal constants and unspecified logarithmic factors? The problem is that the
theory is overly conservative. In practice both 𝜂 and 𝜆 should be much larger
than the theory would suggest, even if you tracked the constants through the
analysis quite carefully. This is quite a standard phenomenon, and usually not a
problem. Here there is a little twist, however. If you choose 𝜂 or 𝜆 too large, then
the algorithm can explode with non-negligible probability. For example, the
covariance matrix might stop being positive definite at some point or 𝐹𝑡 could
grow too large and the algorithm may move slowly relative to the regret suffered.
Hopefully this issue can be resolved in the future but for now you should be
cautious.

10.vi: An interesting question is whether or not Algorithm 10.2 can be
adapted to exploit low variance noise, possibly using the idea in Section 6.6. The
principle challenge is the huge range of the extension, which you could mitigate
by assuming the loss is Lipschitz and using Proposition 3.20 with Remark 3.21.
Or, even better, by developing some new techniques:

Exercise 10.19 ⋆⋆⋆? Analyse the regret of Algorithm 10.2 or some
modification thereof under Assumption 6.17.

10.vii: There are several ways to improve the computational complexity of
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Algorithm 10.2. At the moment the complexity when 𝐾 is a polytope is 𝑂 (𝑑3 +
𝑚𝑑2) with the former term due to computing the eigenvalue decomposition
of the covariance matrix and the latter from the projection (Table 3.2). Note
that 𝑚 ≥ 𝑑 + 1 is needed for 𝐾 to be a convex body, so the second term always
dominates.

Exercise 10.20 ⋆⋆�? Suppose that Σ1/2 is stored in memory and 𝑢 ∈ R𝑑 .
(1) Find a high quality approximation of (Σ−1+𝑢𝑢⊤)−1/2 that can be computed
using 𝑂̃ (𝑑2) arithmetic operations.
(2) Show how to use the above result to reduce the complexity of the Gaussian
sampling in Algorithm 10.2 to 𝑂̃ (𝑑2) arithmetic operations per round.

For (1) you may find the results by Hale et al. (2008) useful. The next
exercise is more speculative:

Exercise 10.21 ⋆⋆⋆? Modify Algorithm 10.2 by removing the projection
onto 𝐾𝜀 and prove whether or not the regret bound in Theorem 10.8 still
holds. We only used that 𝜇𝑡 ∈ 𝐾𝜀 in the proof of Lemma 10.12, which uses
Lemma 10.5. Intuitively, even without the projection the algorithm should keep
𝜇𝑡 close to 𝐾𝜀 since the extended loss grows rapidly outside 𝐾𝜀 . Alternatively,
you may argue that the projections happen rarely, possibly after modifying the
algorithm in some way.
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Because the optimistic Gaussian surrogate is only well-behaved on a shrinking
ellipsoidal focus region, algorithms that use it are most naturally analysed in the
stochastic setting where it is already a challenge to prove that the optimal action
remains in the focus region. In the adversarial setting there is limited hope to
ensure the optimal action in hindsight remains in the focus region. The plan is
to use a mechanism that detects when the minimiser leaves the focus region and
restarts the algorithm. This is combined with an argument that at any time a
restart occurs the regret is negative. The formal setting studied in this chapter is
characterised by the following assumption:

Assumption 11.1 The following hold:

(1) The losses are bounded: 𝑓𝑡 ∈ ℱb for all 𝑡.
(2) The constraint set is rounded: B𝑑1 ⊂ 𝐾 ⊂ B𝑑2𝑑 .

This is the same assumption as in Chapter 10 except that the setting is now
adversarial. The highlight is a computationally efficient algorithm and regret
bound of 𝑂̃ (𝑑2.5√𝑛) under Assumption 11.1. As in Chapter 10 we assume that
𝛿 ∈ (0, 1) is a small user-defined constant that satisfies 𝛿 ≤ poly(1/𝑑, 1/𝑛) and

𝐿 = 𝐶 log(1/𝛿)

where 𝐶 > 0 is a universal constant. The analysis in this chapter builds on and
refers to the arguments in Chapter 10, which should be read first.

11.1 Approximate convex minimisation ( )

The version of online Newton step for adversarial convex bandits makes use of
a subroutine for approximately minimising a nearly convex function.

173



174 Online Newton step for adversarial losses

Assumption 11.2 𝐾 ⊂ R𝑑 is a convex body and ℎ : 𝐾 → R, ℎ̂ : 𝐾 → R and
ℎ̂′ : 𝐾 → R𝑑 are functions such that:

(1) ℎ is convex and differentiable; and
(2) |ℎ(𝑥) − ℎ̂(𝑥) | ≤ 𝜀0 for all 𝑥 ∈ 𝐾; and
(3) ⟨ℎ′ (𝑥) − ℎ̂′ (𝑥), 𝑥 − 𝑦⟩ ≤ 𝜀1 for all 𝑥, 𝑦 ∈ 𝐾 .

Note, in spite of the notation, there is no need for ℎ̂′ to be the gradient of ℎ̂.
The objective is to find a procedure that finds a near-minimiser of ℎ̂, which is
an approximately convex function. This can be accomplished in many ways,
but the most straightforward idea is to use gradient descent with the ‘gradients’
provided by ℎ̂′.

1 args : 𝜂 > 0 , 𝐴 ∈ S𝑑++
2 l e t 𝑥1 ∈ 𝐾
3 f o r 𝑡 = 1 to 𝑛

4 𝑥𝑡+1 = arg min𝑥∈𝐾 ∥𝑥𝑡 − 𝜂𝐴ℎ̂′ (𝑥𝑡 ) − 𝑥∥𝐴−1

5 re turn 1
𝑛

∑𝑛
𝑡=1 𝑥𝑡

Algorithm 11.1: Approximate gradient descent

Remark 11.3 The matrix 𝐴 accepted as input by Algorithm 11.1 corresponds
to a change of coordinates, which you will discover is needed in our application
because gradient descent is not equivariant under coordinate changes.

Theorem 11.4 Suppose that ∥𝑥 − 𝑦∥2
𝐴−1 ≤ 1 for all 𝑥, 𝑦 ∈ 𝐾 and that

∥ ℎ̂′ (𝑥)∥𝐴 ≤ 𝐺 for all 𝑥 ∈ 𝐾. Then, under Assumption 11.2, the output 𝑦 of
Algorithm 11.1 with 𝜂 = 𝐺/

√
𝑛 satisfies

ℎ̂(𝑦) ≤ inf
𝑥∈𝐾

ℎ̂(𝑥) + 𝜀1 + 2𝜀0 +
𝐺
√
𝑛
.

Proof We follow the standard analysis of gradient descent. Let 𝑥 ∈ 𝐾 be
arbitrary. Then

1
2
∥𝑥𝑡+1 − 𝑥∥2

𝐴−1 ≤
1
2
∥𝑥𝑡 − 𝜂𝐴ℎ̂′ (𝑥𝑡 ) − 𝑥∥2

𝐴−1

=
1
2
∥𝑥𝑡 − 𝑥∥2

𝐴−1 − 𝜂⟨ℎ̂′ (𝑥𝑡 ), 𝑥𝑡 − 𝑥⟩ +
𝜂2

2
∥ ℎ̂′ (𝑥𝑡 )∥2

𝐴

≤ 1
2
∥𝑥𝑡 − 𝑥∥2

𝐴−1 − 𝜂⟨ℎ′ (𝑥𝑡 ), 𝑥𝑡 − 𝑥⟩ + 𝜂𝜀1 +
𝜂2

2
∥ ℎ̂′ (𝑥𝑡 )∥2

𝐴

≤ 1
2
∥𝑥𝑡 − 𝑥∥2

𝐴−1 − 𝜂⟨ℎ′ (𝑥𝑡 ), 𝑥𝑡 − 𝑥⟩ + 𝜂𝜀1 +
𝐺2𝜂2

2
.
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Summing and telescoping shows that
𝑛∑︁
𝑡=1

(ℎ(𝑥𝑡 ) − ℎ(𝑥)) ≤
𝑛∑︁
𝑡=1

⟨ℎ′ (𝑥𝑡 ), 𝑥𝑡 − 𝑥⟩ ℎ convex

≤ 𝑛𝜀1 +
𝑛𝜂𝐺2

2
+ 1

2𝜂
= 𝑛𝜀1 + 𝐺

√
𝑛 . (11.1)

Let 𝑥 ∈ 𝐾 be arbitrary and remember that 𝑦 = 1
𝑛

∑𝑛
𝑡=1 𝑥𝑡 is the average of the

iterates. Then, by convexity,

ℎ̂(𝑦) − ℎ̂(𝑥) ≤ 2𝜀0 + ℎ (𝑦) − ℎ(𝑥) By assumption

≤ 2𝜀0 +
1
𝑛

𝑛∑︁
𝑡=1

(ℎ(𝑥𝑡 ) − ℎ(𝑥)) ℎ convex

≤ 2𝜀0 + 𝜀1 +
𝐺
√
𝑛
. By (11.1)

The result follows since 𝑥 ∈ 𝐾 was arbitrary. □

Corollary 11.5 Under the same conditions as Theorem 11.4, running Algo-
rithm 11.1 for 𝑛 = 𝐺2

(2𝜀0+𝜀1 )2 iterations yields a point 𝑦 such that

ℎ̂(𝑦) ≤ inf
𝑥∈𝐾

ℎ̂(𝑥) + 4𝜀0 + 2𝜀1 .

A theoretically faster but less practical solution is to use the ellipsoid method,
as we explain in Note 11.ii.

11.2 Decaying Online Newton step

We introduce a modification of online Newton step that decays the covariance
matrix. Like in Section 10.2, let (𝑞𝑡 )𝑛𝑡=1 be a sequence of quadratic functions and
(𝐾𝑡 )𝑛𝑡=0 be a sequence of nonempty compact convex sets such that 𝐾𝑡+1 ⊂ 𝐾𝑡

for all 𝑡. Decaying online Newton step produces a sequence of iterates (𝜇𝑡 ) and
covariances (Σ𝑡 ) such that 𝜇𝑡+1 ∈ 𝐾𝑡 .
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1 args : 𝜂 > 0 , 𝜇1 ∈ 𝐾0 and Σ1 ∈ S𝑑+
2 f o r 𝑡 = 1 to 𝑛

3 compute 𝛾𝑡 ∈ (0, 1] and 𝐾𝑡 ⊂ 𝐾𝑡−1 i n some way
4 l e t 𝑔𝑡 = 𝑞𝑡 (𝜇𝑡 ) and 𝐻𝑡 = 𝑞

′′
𝑡 (𝜇𝑡 )

5 u p d a t e Σ−1
𝑡+1 = 𝛾𝑡Σ

−1
𝑡 + 𝜂𝐻𝑡

6 u p d a t e 𝜇𝑡+1 = arg min𝜇∈𝐾𝑡 ∥𝜇 − (𝜇𝑡 − 𝜂Σ𝑡+1𝑔𝑡 )∥Σ−1
𝑡+1

Algorithm 11.2: Decaying online Newton step

Theorem 11.6 Suppose that Algorithm 11.2 is run on sequence of quadratics
(𝑞𝑡 )𝑛𝑡=1 and produces iterates (𝜇𝑡 )𝑛𝑡=1 and covariances (Σ𝑡 )𝑛𝑡=1. Then, provided
that Σ−1

1 , . . . ,Σ−1
𝑛+1 ∈ S𝑑++, for any 𝑥 ∈ 𝐾𝑛

1
2𝜂

∥𝜇𝑛+1 − 𝑥∥2
Σ−1
𝑛+1

≤ 1
2𝜂

∥𝜇1 − 𝑥∥2
Σ−1

1
+ 𝜂

2

𝑛∑︁
𝑡=1

∥𝑔𝑡 ∥2
Σ𝑡+1

− Γ𝑛 (𝑥)
𝜂

− �qReg𝑛 (𝑥) ,

where �qReg𝑛 (𝑥) =
∑𝑛
𝑡=1 (𝑞𝑡 (𝜇𝑡 ) − 𝑞𝑡 (𝑥)) and Γ𝑛 (𝑥) = 1

2
∑𝑛
𝑡=1 (1 − 𝛾𝑡 )∥𝑥 −

𝜇𝑡 ∥Σ−1
𝑡

.

Remark 11.7 The sets (𝐾𝑡 )𝑛𝑡=0 and decay factors (𝛾𝑡 )𝑛𝑡=1 can be data-dependent.
In our application (𝐾𝑡 ) will be defined as the intersection of ellipsoidal focus
regions on which the surrogate loss is well-behaved.

Before the proof, let us say something about why the regret bound is
useful. What is new compared to the standard version of online Newton step
(Theorem 10.2) is the negative terms appearing on the right-hand side. These
can be considerable when 𝑥 is far from the centre of the ellipsoid 𝐸 (𝜇𝑡 , Σ𝑡 ).
This is precisely the focus region where our surrogate is well-behaved, which
means that once a comparator leaves the focus region the regret with respect to
the estimated quadratic surrogates will be negative, at least when the parameters
are tuned correctly.

Proof of Theorem 11.6 Let 𝑥 ∈ 𝐾𝑛. By definition,
1
2
∥𝜇𝑡+1 − 𝑥∥2

Σ−1
𝑡+1

≤ 1
2
∥𝜇𝑡 − 𝜂Σ𝑡+1𝑔𝑡 − 𝑥∥2

Σ−1
𝑡+1

=
1
2
∥𝜇𝑡 − 𝑥∥2

Σ−1
𝑡+1

+ 𝜂2

2
∥𝑔𝑡 ∥2

Σ𝑡+1
− 𝜂 ⟨𝑔𝑡 , 𝜇𝑡 − 𝑥⟩

=
1
2
∥𝜇𝑡 − 𝑥∥2

𝛾𝑡Σ
−1
𝑡

+ 𝜂2

2
∥𝑔𝑡 ∥2

Σ𝑡+1
− 𝜂(𝑞𝑡 (𝜇𝑡 ) − 𝑞𝑡 (𝑥))

=
1
2
∥𝜇𝑡 − 𝑥∥2

Σ−1
𝑡

+ 𝜂2

2
∥𝑔𝑡 ∥2

Σ𝑡+1
− 𝜂(𝑞𝑡 (𝜇𝑡 ) − 𝑞𝑡 (𝑥)) −

1 − 𝛾𝑡
2

∥𝜇𝑡 − 𝑥∥2
Σ−1
𝑡

,
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where in the inequality we used the fact that 𝑥 ∈ 𝐾𝑛 ⊂ 𝐾𝑡 and the assumption
that Σ−1

𝑡+1 is positive definite. Summing, telescoping and rearranging completes
the claim. □

11.3 Regularity and extensions

Remember that 𝑀 (𝐾) = E[𝜋(𝑋)], where 𝜋 is the Minkowski functional associ-
ated with 𝐾 and 𝑋 is uniformly distributed on S𝑑−1

1 . Under Assumption 11.1,
B𝑑1 ⊂ 𝐾 and therefore

𝑀 (𝐾) ≤ 1 .

In contrast to Chapter 10, there is nothing to be gained here by improving 𝑀 (𝐾)
from 𝑂 (1) to 𝑂̃ (𝑑−1/2). Given an 𝜀 ∈ (0, 1) to be tuned later, the extension of
the loss function 𝑓𝑡 is

𝑒𝑡 (𝑥) = 𝜋∧ (𝑥) 𝑓𝑡
(

𝑥

𝜋∧ (𝑥)

)
+ 2(𝜋∧ (𝑥) − 1)

𝜀
,

where 𝜋∧ (𝑥) = max(1, 𝜋(𝑥)/(1 − 𝜀)). Remember that 𝐾𝜀 = (1 − 𝜀)𝐾. As in
Chapter 10 we abuse notation by saying that the algorithm samples 𝑋𝑡 from
N (𝜇𝑡 , Σ𝑡 ), plays 𝑋𝑡/𝜋∧ (𝑋𝑡 ) and observes

𝑌𝑡 = 𝜋∧ (𝑋𝑡 )
(
𝑓𝑡

(
𝑋𝑡

𝜋∧ (𝑋𝑡 )

)
+ 𝜀𝑡

)
+ 2(𝜋∧ (𝑋𝑡 ) − 1)

𝜀
.

The surrogate loss in round 𝑡 is defined by

𝑠𝑡 (𝑥) = E𝑡−1

[(
1 − 1

𝜆

)
𝑒𝑡 (𝑋𝑡 ) +

1
𝜆
𝑒𝑡 ((1 − 𝜆)𝑋𝑡 + 𝜆𝑥)

]
.

And its quadratic approximation is

𝑞𝑡 (𝑥) = ⟨𝑠′𝑡 (𝜇𝑡 ), 𝑥 − 𝜇𝑡 ⟩ +
1
4
∥𝑥 − 𝜇𝑡 ∥2

𝑠′′𝑡 (𝜇𝑡 )
.

Let 𝑝𝑡 be the density of N (𝜇𝑡 , Σ𝑡 ) and The surrogate and its gradient and
Hessian are estimated by

𝑠𝑡 (𝑥) =
(
1 − 1

𝜆
+ 𝑟𝑡 (𝑥)

𝜆

)
𝑌𝑡 and

𝑠′𝑡 (𝑥) =
𝑟𝑡 (𝑥)𝑌𝑡
1 − 𝜆 Σ−1

𝑡

(
𝑋𝑡 − 𝜆𝑥
1 − 𝜆 − 𝜇𝑡

)
and (11.2)

𝑠′′𝑡 (𝑥) =
𝜆𝑟𝑡 (𝑥)𝑌𝑡
(1 − 𝜆)2

[
Σ−1
𝑡

(
𝑋𝑡 − 𝜆𝑥
1 − 𝜆 − 𝜇𝑡

) (
𝑋𝑡 − 𝜆𝑥
1 − 𝜆 − 𝜇𝑡

)⊤
Σ−1
𝑡 − Σ−1

𝑡

]
(11.3)



178 Online Newton step for adversarial losses

with

𝑟𝑡 (𝑥) = min
©­­«

𝑝𝑡

(
𝑋𝑡−𝜆𝑥

1−𝜆

)
(1 − 𝜆)𝑑 𝑝𝑡 (𝑋𝑡 )

, exp(2)
ª®®¬ .

Lastly, the quadratic surrogate is estimated by

𝑞𝑡 (𝑥) = ⟨𝑠′𝑡 (𝜇𝑡 ), 𝑥 − 𝜇𝑡 ⟩ +
1
4
∥𝑥 − 𝜇𝑡 ∥2

𝑠′′𝑡 (𝜇𝑡 )
.

These are the same estimators that appeared in Chapters 10 and 12.

11.4 Algorithm

The algorithm is a modification of Algorithm 10.2 for the stochastic setting.
The main differences are:

◦ The decayed online Newton step replaces the classical version; and
◦ a gadget has been introduced to restart the algorithm if negative regret is

detected.

The estimated regret with respect to the estimated cumulative surrogate losses is

�sReg𝑡 (𝑥) =
𝑡∑︁
𝑢=1

(𝑠𝑢 (𝜇𝑢) − 𝑠𝑢 (𝑥)) .
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1 args : 𝜂 , 𝜆 , 𝜎2 , 𝜀 , 𝛾 , 𝜌

2 𝜇1 = 0 , Σ1 = 𝜎21 and 𝐾0 = 𝐾𝜀

3 f o r 𝑡 = 1 to 𝑛

4 compute 𝐾𝑡 =

{
𝑥 ∈ 𝐾𝑡−1 : 𝜆∥𝑥 − 𝜇𝑡 ∥Σ−1

𝑡
≤ 1√

2𝐿

}
5 sample 𝑋𝑡 from N (𝜇𝑡 , Σ𝑡 )
6 o b s e r v e 𝑌𝑡 = 𝜋∧ (𝑋𝑡 )

(
𝑓𝑡

(
𝑋𝑡

𝜋∧ (𝑋𝑡 )

)
+ 𝜀𝑡

)
+ 2(𝜋∧ (𝑋𝑡 )−1)

𝜀

7 compute 𝑔𝑡 = 𝑠
′
𝑡 (𝜇𝑡 ) u s i n g (11.2)

8 compute 𝐻𝑡 =
1
2 𝑠

′′
𝑡 (𝜇𝑡 ) u s i n g (11.3)

9 compute 𝑧𝑡−1 = arg min
𝑧∈R𝑑

[
Γ𝑡−1 (𝑧) ≜

𝑡−1∑︁
𝑠=1

(1 − 𝛾𝑠)∥𝑧 − 𝜇𝑠 ∥2
Σ−1
𝑠

]

10 𝛾𝑡 =


1 if Γ𝑡−1 (𝑧𝑡−1) ≥ 3𝜌
𝛾 if Σ−1

𝑡 ⪯̸
∑𝑡−1
𝑠=1 1(𝛾𝑠 ≠ 1)Σ−1

𝑠

𝛾 if ∥𝜇𝑡 − 𝑧𝑡−1∥2
Σ−1
𝑡

≥ 1
8𝐿𝜆2

1 otherwise .
11 compute Σ−1

𝑡+1 = 𝛾𝑡Σ
−1
𝑡 + 𝜂𝐻𝑡

12 compute 𝜇𝑡+1 = arg min𝜇∈𝐾𝑡 ∥𝜇 − [𝜇𝑡 − 𝜂Σ𝑡+1𝑔𝑡 ] ∥Σ−1
𝑡+1

13 f i n d 𝑦𝑡 ∈ 𝐾𝑡 such t h a t 𝜂�sReg𝑡 (𝑦𝑡 ) ≥ max𝑦∈𝐾𝑡 𝜂�sReg𝑡 (𝑦) − 𝜌
14 i f �sReg𝑡 (𝑦𝑡 ) ≤ −2𝜌 then : r e s t a r t

Algorithm 11.3: Online Newton step for adversarial convex bandits

Computation Algorithm 11.3 can be implemented in polynomial time provided
that 𝐾 is suitably represented. The difficult steps are:

◦ Sampling from the Gaussian, which naively requires an eigenvalue decom-
position of the covariance matrix.

◦ The computation of 𝑧𝑡−1 in Line 9, which is an unconstrained convex
quadratic minimisation problem and therefore has a closed-form solution.

𝑧𝑡−1 =

(
𝑡−1∑︁
𝑠=1

(1 − 𝛾𝑠)Σ−1
𝑠

)−1 𝑡−1∑︁
𝑠=1

(1 − 𝛾𝑠)Σ−1
𝑠 𝜇𝑠 ,

with the convention that 𝑧𝑡−1 = 0 when 𝑡 = 1.
◦ The projection in Line 12 depends on the representation of 𝐾 . Note that the

projection is onto 𝐾𝑡 , which is the intersection of 𝐾 and the ellipsoidal focus
regions. When 𝐾 is a polytope, then this is a quadratic program and can
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be solved efficiently using interior point methods. Note, however, there are
𝑂 (𝑡) quadratic constraints due to the intersecting ellipsoidal focus regions.

◦ The most challenging problem is the non-convex problem in Line 13 for
which you can use Algorithm 11.1 or the ellipsoid method as explained in
Section 11.7.

Explanation of the parameters Algorithm 11.3 has many tuning parameters,
including two new ones compared to the stochastic setting. The role of the
parameters and their values up to logarithmic factors are given in Table 11.1.

𝜂 learning rate
√︁
𝑑/𝑛

𝜆 smoothing parameter for surrogate 1
𝑑2

𝜎2 defines the initial covariance 1
𝑑

𝜀 defines the set on which the extension is defined
√︁
𝑑5/𝑛

𝛾 determines the decay of the covariance 1 − 1
𝑑

𝜌 margin that triggers restart condition 𝑑3

Table 11.1: Table of tuning constants. Constants and logarithmic factors are
omitted, but are given in Theorem 11.8.

11.5 Analysis

Theorem 11.8 Suppose Algorithm 11.3 is run with parameters

𝜆 =
1

𝐶𝑑2𝐿3 𝜂 =

√︁
𝑑/𝑛
𝐶𝐿

𝛾 = 2− 1
1+𝑑𝐿

𝜎2 =
1
𝑑𝐿4 𝜌 = 2𝐶𝑑3𝐿4 𝜀 =

𝑑2.5𝐿5
√
𝑛

.

Then, under Assumption 11.1, with probability at least 1 − 𝛿, the regret of
Algorithm 11.3 is bounded by

Reg𝑛 = 𝑂
(
𝑑2.5𝐿5√𝑛

)
.

Proof The argument largely follows the analysis in Section 10.5, but with
several additional steps. Most importantly, we need to show the following hold
with high probability.
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(1) If the algorithm restarts, then the regret is negative.
(2) If the minimiser of the surrogate moves outside the focus region, then the
algorithm restarts.

Let 𝐻̄𝑡 = E𝑡−1 [𝐻𝑡 ] and define Σ̄−1
𝑡 inductively by Σ̄−1

1 = Σ−1
1 and

Σ̄−1
𝑡+1 = 𝛾𝑡 Σ̄

−1
𝑡 + 𝜂𝐻̄𝑡 .

Define

𝑥𝑒𝜏 = arg min
𝑥∈𝐾𝜀

𝜏∑︁
𝑡=1

𝑒𝑡 (𝑥) 𝑥𝑠𝜏 = arg min
𝑥∈𝐾𝜀

𝜏∑︁
𝑡=1

𝑠𝑡 (𝑥)

𝑦𝑠𝜏 = arg min
𝑦∈𝐾𝜏

𝜏∑︁
𝑡=1

𝑠𝑡 (𝑦) 𝑦𝑠𝜏 = arg min
𝑦∈𝐾𝜏

𝜏∑︁
𝑡=1

𝑠𝑡 (𝑥) .

The superscript indicates which functions are being minimised. Note also the
different domains with 𝑥𝑒𝜏 and 𝑥𝑠𝜏 in𝐾𝜀 and 𝑦𝑠𝜏 and 𝑦𝑠𝜏 in𝐾𝜏 . Like in Section 10.5,
we define a stopping time.

Definition 11.9 Let 𝜏 be the first round when one of the following does not
hold:

(1) 𝑥𝑠𝜏 ∈ 𝐾𝜏+1.
(2) Σ𝜏+1 is positive definite.
(3) 𝛿1 ⪯ 1

2 Σ̄
−1
𝜏+1 ⪯ Σ−1

𝜏+1 ⪯ 2Σ̄−1
𝜏+1 ⪯ 1

𝛿
1.

(4) The algorithm does not restart at the end of round 𝜏.

If the conditions hold for all rounds, then 𝜏 is defined to be 𝑛.

Note that 𝜏 is a stopping time with respect to (ℱ𝑡 )𝑛𝑡=1 because 𝑥𝑠𝑡 , 𝐾𝑡+1 and
Σ𝑡+1 are ℱ𝑡 -measurable.

Step 1: Regret relative to extension Let

eReg𝑛 =
𝑛∑︁
𝑡=1

(
E𝑡−1 [𝑒𝑡 (𝑋𝑡 )] − 𝑒𝑡 (𝑥𝑒𝑛)

)
.

Repeating the analysis in the proof of Theorem 10.8 shows that with probability
at least 1 − 𝛿/7,

Reg𝑛 ≤ 𝑛𝜀 +
√︁

2𝑛 log(7/𝛿) + eReg𝑛 . e0

And hence for the remainder we focus on bounding eReg𝑛 with high probability.



182 Online Newton step for adversarial losses

Step 2: Concentration Define events

e1 =

{
max

1≤𝑡≤𝜏
|𝜀𝑡 | ≤

√︁
log(14𝑛/𝛿)

}
(e1)

e2 =

{
max

1≤𝑡≤𝜏
𝜋(𝑋𝑡 ) ≤

√
𝐿

}
(e2)

e3 =

{
max

1≤𝑡≤𝜏
∥𝑋𝑡 − 𝜇𝑡 ∥Σ−1

𝑡
≤

√︂
8𝑑
3

log(14𝑛/𝛿)
}
. (e3)

Repeating the arguments in the proof of Theorem 10.8 and using Table 11.2.a
shows that P(e1 ∩ e2 ∩ e3) ≥ 1 − 3𝛿/7. The next lemma bounds the sum∑𝜏
𝑡=1 E𝑡−1 [𝑌2

𝑡 ].

Lemma 11.10 Let 𝑌max = max1≤𝑡≤𝜏 (|𝑌𝑡 | + E𝑡−1 [|𝑌𝑡 |]). On e1 ∩ e2 ∩ e3 the
following hold:

(1) 𝑌max ≤ 𝐿
𝜀

.
(2)

∑𝜏
𝑡=1 E𝑡−1 [𝑌2

𝑡 ] ≤ 10𝑛.

Proof See the proof of Lemma 10.12 except that (10.13) is replaced by (11.6)
and use Table 11.2.b. □

We also need to bound
∑𝜏
𝑡=1𝑌

2
𝑡 with high probability. Let e4 be the event

defined by

e4 =

{
𝜏∑︁
𝑡=1

𝑌2
𝑡 ≤ 21𝑛

}
. (e4)

Lemma 11.11 P(e4 ∪ (e1 ∩ e2 ∩ e3)𝑐) ≥ 1 − 𝛿/7.

Proof See the proof of Lemma 10.13. □

The last two events control the concentration of the estimated quadratic
surrogate about its mean at the optimal point and the concentration of the
Hessian estimates. Let 𝐶𝜏 = 3𝐿2√𝑑𝑛

𝜆
and e5 be the event that all of the following

hold:

(1)
��∑𝜏
𝑡=1 (𝑞𝑡 (𝑥) − 𝑞𝑡 (𝑥))

�� ≤ 𝐶𝜏 for all 𝑥 ∈ 𝐾𝜏 .
(2)

��∑𝜏
𝑡=1 (𝑠𝑡 (𝑥) − 𝑠𝑡 (𝑥))

�� ≤ 𝐶𝜏 for all 𝑥 ∈ 𝐾𝜏 .
(3)

��∑𝜏
𝑡=1⟨𝑠′𝑡 (𝑥) − 𝑠′𝑡 (𝑥), 𝑥 − 𝑦⟩

�� ≤ 𝜆𝐶𝜏 for all 𝑥, 𝑦 ∈ 𝐾𝜏 .

Lemma 11.12 P(e5 ∪ (e1 ∩ e2 ∩ e3 ∩ e4)𝑐) ≥ 1 − 𝛿/7.

Note, the dimension-dependence in 𝐶𝜏 appears because the concentration
bound needs to hold uniformly for all 𝑥 ∈ 𝐾𝜏 , which is accomplished by a
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covering argument and union bound. By contrast, in the stochastic setting bounds
of this kind were only needed at the minimiser of the loss.

Proof By Proposition 12.24(2), with probability at least 1 − 𝛿,

max
𝑥∈𝐾𝜏

����� 𝜏∑︁
𝑡=1

(𝑞𝑡 (𝑥) − 𝑞𝑡 (𝑥))
����� ≤ 1 + 1

𝜆


√√
𝑑

𝜏∑︁
𝑡=1

E𝑡−1 [𝑌2
𝑡 ]𝐿 + 𝑑𝐿𝑌max

 .
The claim follows from Lemma 11.10. The second part follows by using
Proposition 12.23(2) and the same argument. □

Comparing Σ̄𝑡 and Σ𝑡 is slightly more delicate thanks to the decay. Let 𝑤0 = 1
and 𝑤𝑡 =

∏𝑡
𝑠=1 𝛾𝑠 . A simple induction shows that

Σ−1
𝑡+1 = 𝑤𝑡

[
1
𝜎21 + 𝜂

𝑡∑︁
𝑠=1

𝐻𝑠

𝑤𝑠

]
≜ 𝑤𝑡

[
1
𝜎21 + 𝜂𝑆𝑡

]
and

Σ̄−1
𝑡+1 = 𝑤𝑡

[
1
𝜎21 + 𝜂

𝑡∑︁
𝑠=1

𝐻̄𝑠

𝑤𝑠

]
≜ 𝑤𝑡

[
1
𝜎21 + 𝜂𝑆𝑡

]
.

The next lemma characterises the important properties of the weights (𝑤𝑡 )𝜏𝑡=1.
The proof is deferred to Section 11.6.

Lemma 11.13 The following hold:

(1)
∑𝜏
𝑡=1 1(𝛾𝑡 ≠ 1) ≤ 6 + 𝑑𝐿.

(2) 𝑤𝑡 ∈ [1/2, 1] for all 𝑡 ≤ 𝜏.
(3) 𝑤𝑡 is ℱ𝑡−1-measurable for all 𝑡.

Finally, let e6 be the event that

e6 =

{
−3𝜆𝐿2√𝑑𝑛Σ̄−1

𝜏 ⪯ 𝑆𝜏 − 𝑆𝜏 ⪯ 3𝜆𝐿2√𝑑𝑛Σ̄−1
𝜏

}
. (e6)

Lemma 11.14 P(e6 ∪ (e1 ∩ e2 ∩ e3 ∩ e4)𝑐) ≥ 1 − 𝛿/7.

Proof By Proposition 12.27 (and Remark 12.29 and Lemma 11.13) with
Σ−1 = 3

2 Σ̄
−1
𝜏 , with probability at least 1 − 𝛿,

− 𝜆𝐿2
1 +

√√
𝑑

𝜏∑︁
𝑡=1

E𝑡−1 [𝑌2
𝑡 ] + 𝑑2𝑌max


3
2
Σ̄−1
𝜏 ⪯ 𝑆𝜏 − 𝑆𝜏

⪯ 𝜆𝐿2
1 +

√√
𝑑

𝜏∑︁
𝑡=1

E𝑡−1 [𝑌2
𝑡 ] + 𝑑2𝑌max


3
2
Σ̄−1
𝜏 .

The claim now follows from Lemma 11.10. □
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Let 𝐸 = e0 ∩ e1 ∩ e2 ∩ e3 ∩ e4 ∩ e5 ∩ e6 be the intersection of all these
high probability events. A union bound over the preceding lemmas shows that
P(𝐸) ≥ 1 − 𝛿. For the remainder of the proof we bound the regret on 𝐸 .

Step 3: Simple bounds We can now make some elementary conclusions
that hold on the intersection of all the high probability events outlined in
the previous step. Repeating the calculation used to derive (10.16) but using
Lemma 11.10(2),

𝜏∑︁
𝑡=1

∥𝑔𝑡 ∥2
Σ𝑡

≤ 𝑑𝑛𝐿 . (11.4)

By the definition of e6,

Σ−1
𝜏+1 = 𝑤𝜏

[
Σ−1

1 + 𝜂𝑆𝜏
]

⪯ 𝑤𝜏
[
Σ−1

1 + 𝜂𝑆𝜏 + 3𝜂𝜆𝐿2√𝑑𝑛Σ̄−1
𝜏

]
⪯ 𝑤𝜏

[
Σ−1

1 + 𝜂𝑆𝜏 +
1
2
Σ̄−1
𝜏

]
by Table 11.2.d

= Σ̄−1
𝜏+1 +

𝑤𝜏

2
Σ̄−1
𝜏

⪯ 3
2
Σ̄−1
𝜏+1 ,

where the final inequality holds because Σ̄−1
𝜏+1 = 𝛾𝑡 Σ̄

−1
𝜏 + 𝜂𝐻̄𝜏 ⪰ 𝛾𝜏 Σ̄

−1
𝜏 ⪰

𝑤𝜏 Σ̄
−1
𝜏 . Similarly,

Σ−1
𝜏+1 ⪰ 𝑤𝜏 [Σ−1

1 + 𝜂𝑆𝜏] −
𝑤𝜏

2
Σ̄−1
𝜏 = Σ̄−1

𝜏+1 −
𝑤𝜏

2
Σ̄−1
𝜏 ⪰ 1

2
Σ̄−1
𝜏+1 .

Combining shows that
1
2
Σ̄−1
𝜏+1 ⪯ Σ−1

𝜏+1 ⪯ 3
2
Σ̄−1
𝜏+1 .

We also need to show that

2𝛿1 ⪯ Σ̄−1
𝜏+1 ⪯ 1

2𝛿
1 , (11.5)

which follows from exactly the same argument as in the proof of Theorem 10.8.
Therefore both Definition 11.9(2) and Definition 11.9(3) hold and so the only
way that 𝜏 ≠ 𝑛 is if 𝑥𝑠𝜏 ∉ 𝐾𝜏+1 or the algorithm restarts at the end of round 𝜏.
The map 𝑡 ↦→ Σ𝑡 is nearly nonincreasing in the following sense. Given 𝑠 ≤ 𝑡 ≤ 𝜏,

Σ𝑡 ⪯ 2Σ̄𝑡 =
2

𝑤𝑡−1

(
Σ−1

1 + 𝜂𝑆𝑡
)−1

⪯ 2
𝑤𝑡−1

(
Σ−1

1 + 𝜂𝑆𝑠
)−1

=
2𝑤𝑠−1
𝑤𝑡−1

Σ̄𝑠 ⪯ 4Σ̄𝑠 ⪯ 8Σ𝑠 . (11.6)
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The decay of the inverse covariance matrix has an important implication: Recall
the definition of (Γ𝑡 ) in Line 9 of Algorithm 11.3.

Lemma 11.15 Suppose that 𝑥 ∈ 𝜕𝐾𝜏 , then Γ𝜏 (𝑥) ≥ 3𝜌.

The proof is deferred to Section 11.6. We also need an elementary bound on
the magnitude of the surrogate losses.

Lemma 11.16 Suppose that 𝑥 ∈ 𝐾𝜀 . Then − 10
𝜆𝜀

≤ 𝑠𝑡 (𝑥) ≤ 1.

Exercise 11.17 ⋆ Prove Lemma 11.16 using the following steps:

(1) For the upper bound, combine the properties of the extension (Proposi-
tion 3.22) and Lemma 12.3(2).
(2) For the lower bound, use the definition of 𝑠𝑡 and non-negativity of 𝑒𝑡 and
its definition and Lemma 10.5(1) and the fact that 𝑀 (𝐾)

√
𝑑𝜎2 ≤ 1.

Step 4: Trace/logdet inequalities Again, we repeat the corresponding argument
in the proof of Theorem 10.8. The argument is made slightly more complicated
by the decaying covariance matrices.

Lemma 11.18 The following holds:

4
𝜆

𝜏∑︁
𝑡=1

tr(𝐻̄𝑡Σ𝑡 ) ≤
𝑑𝐿

𝜆𝜂
.

Proof By Proposition 12.6 and Proposition 3.22, for any 𝑡 ≤ 𝜏,

𝜂




Σ1/2
𝑡 𝑞′′𝑡 (𝜇𝑡 )Σ

1/2
𝑡




 ≤ 𝜂𝜆 lip(𝑒𝑡 )
4(1 − 𝜆)

√︁
𝑑 ∥Σ𝑡 ∥ ≤

𝜂𝜆𝜎
√
𝑑

𝜀(1 − 𝜆) ≤ 1 , (11.7)

where we used (11.6) to bound ∥Σ𝑡 ∥ ≤ 4𝜎2. The final inequality follows from
Table 11.2.f. Note that

Σ̄−1
𝑡+1 = 𝛾𝑡 Σ̄

−1
𝑡 + 𝜂𝐻̄𝑡 ⪰ 𝛾𝑡 Σ̄−1

𝑡 .

By Lemma A.10,

log det(1 + 𝜂𝐻̄𝑡 Σ̄𝑡 ) = log det(𝛾𝑡1 + 𝜂𝐻̄𝑡 Σ̄𝑡 + (1 − 𝛾𝑡 )1)

≤ log det(𝛾𝑡1 + 𝜂𝐻̄𝑡 Σ̄𝑡 ) +
𝑑 (1 − 𝛾𝑡 )

𝛾𝑡

= log det(Σ̄𝑡 Σ̄−1
𝑡+1) +

𝑑 (1 − 𝛾𝑡 )
𝛾𝑡

≤ log det(Σ̄𝑡 Σ̄−1
𝑡+1) +

1(𝛾𝑡 ≠ 1)
√
𝐿

, (11.8)
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where the final inequality follows because either 𝛾𝑡 = 1 or 𝛾 = 2− 1
1+𝑑𝐿 ≈

1 − log(2)
1+𝑑𝐿 . Combining (11.7) and (11.8) and Lemma A.9,

4
𝜆

𝜏∑︁
𝑡=1

tr(𝐻̄𝑡Σ𝑡 )
(a)

≤ 16
𝜆𝜂

𝜏∑︁
𝑡=1

log det
(
1 + 𝜂𝐻̄𝑡Σ𝑡

2

)
(b)

≤ 16
𝜆𝜂

𝜏∑︁
𝑡=1

log det
(
1 + 𝜂𝐻̄𝑡 Σ̄𝑡

)
(c)

≤ 16
𝜆𝜂

√
𝐿

𝜏∑︁
𝑡=1

1(𝛾𝑡 ≠ 1) + 16
𝜆𝜂

𝜏∑︁
𝑡=1

log det
(
Σ̄𝑡 Σ̄

−1
𝑡+1

)
(d)

≤ 𝑑𝐿

2𝜆𝜂
+ 16
𝜆𝜂

log det
(
1 + 𝜂𝜎2𝑆𝜏

)
(e)

≤ 𝑑𝐿

2𝜆𝜂
+ 16
𝜆𝜂

log det
(
1 + 𝜎21

𝛿

)
(f)

≤ 𝑑𝐿

𝜆𝜂
,

where (a) follows from Lemma A.9, (b) since Σ𝑡 ⪯ 2Σ̄𝑡 , (c) by (11.8), (d)
from Lemma 11.13(1) and by telescoping the sum of log-determinants, (e)
by bounding 𝜂𝑆𝜏 ⪯ 1

𝑤𝜏
Σ̄−1
𝜏+1 ⪯ 1

𝛿
1 using (11.5) and Lemma 11.13 to bound

𝑤𝜏 ≥ 1/2. (f) follows by naive simplification. □

A simple consequence is a bound on the regret relative to the extension in
terms of the regret relative to the quadratic surrogates.

Lemma 11.19 The following hold:

(1) eReg(𝑥𝑒𝜏) ≤ sReg(𝑥𝑠𝜏) + 1 + 𝑑𝐿
𝜂𝜆

.
(2) eReg(𝑥𝑒𝜏) ≤ qReg(𝑥𝑠𝜏) + 2 + 𝑑𝐿

𝜂𝜆
whenever 𝑥𝑠𝜏 ∈ 𝐾𝜏 .

Proof We have:

eReg(𝑥𝑒𝜏) ≤ sReg(𝑥𝑒𝜏) +
2
𝜆

𝜏∑︁
𝑡=1

tr(𝑠′′𝑡 (𝜇𝑡 )Σ𝑡 ) + 1 by Proposition 12.10

≤ sReg(𝑥𝑠𝜏) +
2
𝜆

𝜏∑︁
𝑡=1

tr(𝑠′′𝑡 (𝜇𝑡 )Σ𝑡 ) + 1 by def. 𝑥𝑠𝜏

= sReg(𝑥𝑠𝜏) +
4
𝜆

𝜏∑︁
𝑡=1

tr(𝐻̄𝑡Σ𝑡 ) + 1 by def. 𝐻̄𝑡

≤ sReg(𝑥𝑠𝜏) +
𝑑𝐿

𝜂𝜆
+ 1 . by Lemma 11.18
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The second part follows from Proposition 12.9, the definition of 𝐾𝜏 and naively
bounding constants. □

Next steps So far the analysis has largely followed that in the stochastic setting,
but now there is a serious deviation. Based on the arguments so far, it has been
established that with high probability the only way 𝜏 ≠ 𝑛 is if 𝑥𝑠𝜏 ∉ 𝐾𝜏+1. While
in the stochastic setting it was possible to prove that the minimiser of the loss
stays in the focus region, this is no longer the case. Instead, it is necessary to
consider a case-by-case analysis and handle the restarts:

◦ When 𝑥𝑠𝜏 ∈ 𝐾𝜏 it can be shown that eReg𝜏 (𝑥𝑒𝜏) is small and simultaneously
that 𝑥𝑠𝜏 ∈ 𝐾𝜏+1 with the latter showing that 𝜏 = 𝑛.

◦ When 𝑥𝑠𝜏 ∉ 𝐾𝜏 , then the algorithm restarts at the end of round 𝜏.
◦ Whenever the algorithm restarts, then the regret relative to the extension is

negative.

Step 5: Regret Suppose that 𝑥𝑠𝜏 ∈ 𝐾𝜏 and the algorithm has not restarted at the
end of round 𝜏, then by Theorem 11.6

1
2
∥𝑥𝑠𝜏 − 𝜇𝜏+1∥2

Σ−1
𝜏+1

(a)

≤ ∥𝑥𝑠𝜏 ∥2

2𝜎2 + 𝜂2

2

𝜏∑︁
𝑡=1

∥𝑔𝑡 ∥2
Σ𝑡+1

− 𝜂�qReg(𝑥𝑠𝜏) − Γ𝜏 (𝑥𝑠𝜏)

(b)

≤ 2𝑑2

𝜎2 + 4𝜂2𝑑𝑛𝐿 − 𝜂�qReg(𝑥𝑠𝜏) − Γ𝜏 (𝑥𝑠𝜏)

(c)

≤ 2𝑑2

𝜎2 + 4𝜂2𝑑𝑛𝐿 + 𝜂𝐶𝜏 − 𝜂qReg(𝑥𝑠𝜏) − Γ𝜏 (𝑥𝑠𝜏)

(d)

≤ 2𝑑2

𝜎2 + 4𝜂2𝑑𝑛𝐿 + 𝜂𝐶𝜏 + 2𝜂 + 𝑑𝐿

𝜆
− 𝜂eReg(𝑥𝑒𝜏)

(e)

≤ 𝜌 − 𝜂eReg(𝑥𝑒𝜏) ,

where (a) follows from Theorem 11.6 and the assumption that 𝑥𝑠𝜏 ∈ 𝐾𝜏 , (b)
by the assumption that 𝐾 ⊂ B𝑑2𝑑 and by (11.4) and (11.6) to bound Σ𝑡+1 ⪯ 8Σ𝑡 .
(c) holds on e5. (d) follows from Lemma 11.19 and because 𝑥𝑠𝜏 ∈ 𝐾𝜏 . And
also because Γ𝜏 (𝑥𝑠𝜏) ≥ 0. (e) follows from the definition of the constants
Table 11.2.c. Rearranging shows that

eReg(𝑥𝑒𝜏) ≤
𝜌

𝜂
.
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Furthermore, since the algorithm has not restarted in round 𝜏 it holds that

1
2
∥𝑥𝑠𝜏 − 𝜇𝜏+1∥2

Σ−1
𝜏+1

≤ 2𝑑2

𝜎2 + 4𝜂2𝑑𝑛𝐿 + 𝜂𝐶𝜏 − 𝜂qReg𝜏 (𝑥𝑠𝜏)

≤ 2𝑑2

𝜎2 + 4𝜂2𝑑𝑛𝐿 + 𝜂𝐶𝜏 + 1 − 𝜂sReg𝜏 (𝑥𝑠𝜏) by Proposition 12.9

≤ 2𝑑2

𝜎2 + 4𝜂2𝑑𝑛𝐿 + 𝜂𝐶𝜏 + 1 − 𝜂sReg𝜏 (𝑦𝜏)

≤ 2𝑑2

𝜎2 + 4𝜂2𝑑𝑛𝐿 + 2𝜂𝐶𝜏 + 1 − 𝜂�sReg𝜏 (𝑦𝜏) on e5

≤ 3𝜌 ≤ 1
4𝐿𝜆2 .

where the second last inequality follows because the algorithm did not restart
so that 𝜂�sReg𝜏 (𝑦𝜏) ≥ −2𝜌. The last inequality follows from Table 11.2.h.
Rearranging shows that

𝜆∥𝑥𝑠𝜏 − 𝜇𝜏+1∥Σ−1
𝜏+1

≤ 1
√

2𝐿
,

which when combined with the assumption that 𝑥𝑠𝜏 ∈ 𝐾𝜏 shows that 𝑥𝑠𝜏 ∈ 𝐾𝜏+1.
Hence by Definition 11.9, 𝜏 = 𝑛 and we have successfully bounded eReg(𝑥𝑒𝑛) ≤
𝜌

𝜂
.

Step 6: Restart analysis Suppose at the end of round 𝜏 that the algorithm
restarts, which means that

𝜂�sReg𝜏 (𝑦𝑠𝜏) = max
𝑦∈𝐾𝜏

𝜂�sReg𝜏 (𝑦) ≤ 𝜂�sReg𝜏 (𝑦𝜏) + 𝜌 ≤ −𝜌 , (11.9)

where in the first inequality we used the definition of 𝑦𝜏 in Line 13 of Algo-
rithm 11.3 and the second we used the fact that a restart is triggered when
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𝜂�sReg𝜏 (𝑦𝜏) ≤ −2𝜌. Then,

𝜂eReg𝜏 (𝑥𝑒𝜏)
(a)

≤ 1 + 𝑑𝐿

𝜆
+ 𝜂sReg𝜏 (𝑥𝑒𝜏)

(b)

≤ 1 + 𝑑𝐿

𝜆
+ 𝜂sReg𝜏 (𝑥𝑠𝜏)

(c)

≤ 1 + 𝑑𝐿

𝜆
+ 𝜂sReg𝜏 (𝑥𝑠𝜏−1) + 𝜂

(
𝑠𝜏 (𝑥𝑠𝜏−1) − 𝑠𝜏 (𝑥

𝑠
𝜏)

)
(d)

≤ 1 + 𝑑𝐿

𝜆
+ 𝜂𝐶𝜏 + 𝜂

(
1 + 10

𝜀𝜆

)
+ 𝜂�sReg𝜏 (𝑥𝑠𝜏−1)

(e)

≤ 1 + 𝑑𝐿

𝜆
+ 𝜂𝐶𝜏 + 𝜂

(
1 + 10

𝜀𝜆

)
+ 𝜂�sReg𝜏 (𝑦𝑠𝜏)

(f)

≤ 𝜌 + 𝜂�sReg𝜏 (𝑦𝑠𝜏)
(g)

≤ 0 ,

where (a) follows from Lemma 11.19. (b) by the definition of 𝑥𝑠𝜏 . (c) by the
definition of 𝑥𝑠

𝜏−1. (d) holds on e5 and by Lemma 11.16. (e) follows from the
definition of 𝜏 so that 𝑥𝑠

𝜏−1 ∈ 𝐾𝜏 and the definition of 𝑦𝑠𝜏 as the maximiser of�sReg𝜏 over 𝐾𝜏 . (f) follows from the definition of the constants Table 11.2.e
and (g) from (11.9). Hence, whenever the algorithm restarts the regret with
respect to the extension is negative. On the other hand, if 𝑥𝑠𝜏 leaves 𝐾𝜏 , then
𝑦𝑠𝜏 ∈ 𝜕𝐾𝜏 and

𝑦𝑠𝜏 − 𝜇𝜏+1



2
Σ−1
𝜏+1

(a)

≤ 2𝑑2

𝜎2 + 4𝜂2𝑑𝑛𝐿 + 𝜂𝐶𝜏 − 𝜂qReg𝜏 (𝑦𝑠𝜏) − Γ𝜏 (𝑦𝑠𝜏)

(b)

≤ 1 + 2𝑑2

𝜎2 + 4𝜂2𝑑𝑛𝐿 + 𝜂𝐶𝜏 − 𝜂sReg𝜏 (𝑦𝑠𝜏) − Γ𝜏 (𝑦𝑠𝜏)

(c)

≤ 1 + 2𝑑2

𝜎2 + 4𝜂2𝑑𝑛𝐿 + 𝜂𝐶𝜏 − 𝜂sReg𝜏 (𝑦𝑠𝜏) − Γ𝜏 (𝑦𝑠𝜏)

(d)

≤ 1 + 2𝑑2

𝜎2 + 4𝜂2𝑑𝑛𝐿 + 2𝜂𝐶𝜏 − 𝜂�sReg𝜏 (𝑦𝑠𝜏) − Γ𝜏 (𝑦𝑠𝜏)

(e)

≤ 1 + 2𝑑2

𝜎2 + 4𝜂2𝑑𝑛𝐿 + 2𝜂𝐶𝜏 − 𝜂�sReg𝜏 (𝑦𝑠𝜏) − 3𝜌
(f)

≤ −2𝜌 − 𝜂�sReg𝜏 (𝑦𝑠𝜏) ,

where (a) from the same calculations as in step 4, (b) from Proposition 12.9,
(c) by the definition of 𝑦𝑠𝜏 and 𝑦𝑠𝜏 . (d) holds on e5, (e) from Lemma 11.15 and
(f) by the definition of the constants Table 11.2.g. Therefore 𝜂�sReg𝜏 (𝑦𝑠𝜏) ≤ −2𝜌.
Hence, by Line 13 of Algorithm 11.3,

𝜂�sReg𝜏 (𝑦𝜏) ≤ 𝜂�sReg𝜏 (𝑦𝑠𝜏) ≤ −2𝜌



190 Online Newton step for adversarial losses

and a restart is triggered. □

11.6 Decay analysis

The purpose of this section is to prove Lemmas 11.13 and 11.15, both of which
are related to the decaying covariance matrix. Recall that

𝑧𝑡−1 = arg min
𝑧∈R𝑑

(
Γ𝑡−1 (𝑧) ≜

𝑡−1∑︁
𝑠=1

(1 − 𝛾𝑠)∥𝑧 − 𝜇𝑠 ∥2
Σ−1
𝑠

}

and with 𝐷𝑡 =
∑𝑡
𝑠=1 1(𝛾𝑠 ≠ 1)Σ−1

𝑠 ,

𝛾𝑡 =


1 if Γ𝑡−1 (𝑧𝑡−1) ≥ 3𝜌
𝛾 if Σ−1

𝑡 ⪯̸ 𝐷𝑡−1

𝛾 if ∥𝜇𝑡 − 𝑧𝑡−1∥2
Σ−1
𝑡

≥ 1
8𝐿𝜆2

1 otherwise .

Remember also that 𝑤𝑡 =
∏𝑡
𝑠=1 𝛾𝑠 .

Proof of Lemma 11.13 We start with part (1), which is the only difficult part.
By definition, 1(𝛾𝑡 ≠ 1) = 𝐴𝑡 + 𝐵𝑡 where

𝐴𝑡 = 1
(
Σ−1
𝑡 ⪯̸ 𝐷𝑡−1 and Γ𝑡−1 (𝑧𝑡−1) < 3𝜌

)
𝐵𝑡 = 1

(
𝐴𝑡 = 0 and ∥𝜇𝑡 − 𝑧𝑡−1∥2

Σ−1
𝑡

≥ 1
8𝐿𝜆2 and Γ𝑡−1 (𝑧𝑡−1) < 3𝜌

)
.

By Definition 11.9, for 𝑠 ≤ 𝜏, Σ−1
𝑠 is positive definite and therefore 𝐷𝑡−1 ⪯ 𝐷𝑡

for all 𝑡 ≤ 𝜏. Furthermore, in rounds 𝑡 where 𝐴𝑡 = 1 it holds that 𝐷𝑡 =

𝐷𝑡−1 + Σ−1
𝑡 and Σ−1

𝑡 ⪯̸ 𝐷𝑡−1, which means that 1 ⪯ 𝐷
−1/2
𝑡−1 𝐷𝑡𝐷

−1/2
𝑡−1 = 1 +

𝐷
−1/2
𝑡−1 Σ−1

𝑡 𝐷
−1/2
𝑡−1 ⪯̸ 21 and therefore

log det𝐷−1
𝑡−1𝐷𝑡 = log det𝐷−1/2

𝑡−1 𝐷𝑡𝐷
−1/2
𝑡−1 ≥ log(2) .
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Hence,
𝜏∑︁
𝑡=1

𝐴𝑡 log(2) ≤
𝜏∑︁
𝑡=1

log det𝐷−1
𝑡−1𝐷𝑡

= log det𝐷−1
1 𝐷𝜏

= log det

(
Σ1

𝜏∑︁
𝑡=1

1(𝛾𝑡 ≠ 1)Σ−1
𝑡

)
≤ 𝑑 log

(
𝑛𝜎2

𝛿

)
≤ 𝑑𝐿 log(2) .

Rearranging shows that

𝜏∑︁
𝑡=1

𝐴𝑡 ≤ 𝑑𝐿 .

Moving now to bound
∑𝜏
𝑡=1 𝐵𝑡 . Recall that Γ𝑡 is a convex quadratic minimised at

𝑧𝑡 ∈ R𝑑 . Let Γ★𝑡 = Γ𝑡 (𝑧𝑡 ). Note that 𝑡 ↦→ Γ★𝑡 is non-decreasing by the definition
of Γ𝑡 . A simple calculation shows that when 𝛾𝑡 ≠ 1, then in rounds 𝑡 where
𝐵𝑡 = 1,

Γ★𝑡
(a)

= Γ★𝑡−1 + (1 − 𝛾)∥𝑧𝑡−1 − 𝜇𝑡 ∥2
Σ−1
𝑡 −Σ−1

𝑡 𝐷
−1
𝑡 Σ−1

𝑡

(b)

≥ Γ★𝑡−1 +
1 − 𝛾

2
∥𝑧𝑡−1 − 𝜇𝑡 ∥2

Σ−1
𝑡

(c)

≥ Γ★𝑡−1 +
1 − 𝛾
16𝐿𝜆2

(d)

≥ Γ★𝑡−1 + 3𝜌 ,

where in (a) we used Lemma A.11 with 𝐴 = Σ−1
𝑡 and 𝐵 = 𝐷𝑡−1. (b) follows

because 𝐵𝑡 = 1 implies that 𝐷𝑡 = 𝐷𝑡−1 + Σ−1
𝑡 ⪰ 2Σ−1

𝑡 , which shows that
Σ−1
𝑡 𝐷−1

𝑡 Σ−1
𝑡 ⪯ 1

2Σ
−1
𝑡 . (c) follows from the definition of 𝐵𝑡 and (d) from

the definition of the constants Table 11.2.h. Since 𝐵𝑡 = 1 can only happen if
Γ★
𝑡−1 < 3𝜌, it follows that

∑𝜏
𝑡=1 𝐵𝑡 ≤ 1. Combining the two parts shows that∑𝜏

𝑡=1 1(𝛾𝑡 ≠ 1) =
∑𝜏
𝑡=1 𝐴𝑡 +

∑𝜏
𝑡=1 𝐵𝑡 ≤ 1 + 𝑑𝐿, which establishes part (1).

Part (2) follows from part (1) since

𝑤𝑡 =

𝑡∏
𝑠=1

𝛾𝑠 ≥ 𝛾1+𝑑𝐿 =
1
2
.

Measurability of the weights (part (3)) follows from the construction of the
algorithm. □
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Proof of Lemma 11.15 Let 𝑥 ∉ 𝐾𝜏 . By the definition of 𝐾𝜏 there exists a 𝑡 ≤ 𝜏
such that

∥𝑥 − 𝜇𝑡 ∥2
Σ−1
𝑡

≥ 1
2𝐿𝜆2 . (11.10)

Since Γ𝜏 (𝑥) ≥ Γ𝑡 (𝑥) it suffices to show that Γ𝑡 (𝑥) ≥ 3𝜌. Suppose that 𝛾𝑡 = 𝛾,
then

Γ𝑡 (𝑥) =
𝑡∑︁
𝑠=1

(1 − 𝛾𝑡 )∥𝑥 − 𝜇𝑡 ∥2
Σ−1
𝑡

≥ (1 − 𝛾)∥𝑥 − 𝜇𝑡 ∥2
Σ−1
𝑡

≥ 1 − 𝛾
2𝐿𝜆2 ≥ 3𝜌 .

For the remainder assume that 𝛾𝑡 = 1. According to the definition of 𝛾𝑡
there are two ways this can happen. When Γ𝑡−1 (𝑧𝑡−1) ≥ 3𝜌, then trivially
Γ𝑡 (𝑥) = Γ𝑡−1 (𝑥) ≥ Γ𝑡−1 (𝑧𝑡−1) ≥ 3𝜌. Lastly, if Γ𝑡−1 (𝑧𝑡−1) < 3𝜌 and 𝛾𝑡 = 1,
then

Σ−1
𝑡 ⪯

𝑡−1∑︁
𝑠=1

1(𝛾𝑠 ≠ 1)Σ−1
𝑠 and (11.11)

∥𝜇𝑡 − 𝑧𝑡−1∥2
Σ−1
𝑡

≤ 1
8𝐿𝜆2 . (11.12)

Therefore,

Γ𝑡 (𝑥) = Γ𝑡−1 (𝑥)

=

𝑡−1∑︁
𝑠=1

(1 − 𝛾𝑠)∥𝑥 − 𝜇𝑠 ∥2
Σ−1
𝑠

= (1 − 𝛾)
𝑡−1∑︁
𝑠=1

1(𝛾𝑠 ≠ 1)∥𝑥 − 𝜇𝑠 ∥2
Σ−1
𝑠

(a)

≥ (1 − 𝛾)
𝑡−1∑︁
𝑠=1

1(𝛾𝑠 ≠ 1)
[
1
2
∥𝑥 − 𝑧𝑡−1∥2

Σ−1
𝑠
− ∥𝑧𝑡−1 − 𝜇𝑠 ∥2

Σ−1
𝑠

]
=

1 − 𝛾
2

𝑡−1∑︁
𝑠=1

1(𝛾𝑠 ≠ 1)∥𝑥 − 𝑧𝑡−1∥2
Σ−1
𝑠
− Γ𝑡−1 (𝑧𝑡−1)

(b)

≥ 1 − 𝛾
2

∥𝑥 − 𝑧𝑡−1∥2
Σ−1
𝑡

− 3𝜌

(c)

≥ 1 − 𝛾
2

[
1
2
∥𝑥 − 𝜇𝑡 ∥2

Σ−1
𝑡

− ∥𝜇𝑡 − 𝑧𝑡−1∥2
Σ−1
𝑡

]
− 3𝜌

(d)

≥ 1 − 𝛾
16𝜆2𝐿

− 3𝜌
(e)

≥ 3𝜌 ,
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where (a) follows from the inequality ∥𝑎 + 𝑏∥2 ≤ 2∥𝑎∥2 + 2∥𝑏∥2. (b) by
the assumption that Γ𝑡−1 (𝑧𝑡1 ) ≤ 3𝜌 and (11.11). (c) by the same inequality
as (a). (d) by (11.10) and (11.12). (e) by the definition of the constants
Table 11.2.h. □

11.7 Approximate optimisation

We need to explain how Algorithm 11.3 might implement the optimisation
problem in Line 13 to find a point 𝑥 ∈ 𝐾𝑡 such that

𝜂�sReg𝑡 (𝑥) ≥ max
𝑥∈𝐾𝑡

𝜂�sReg𝑡 (𝑥) − 𝜌 , (11.13)

which is equivalent to finding an 𝑥 ∈ 𝐾𝑡 such that

𝜂

𝑡∑︁
𝑢=1

𝑠𝑢 (𝑥) ≤ min
𝑦∈𝐾𝑡

𝜂

𝑡∑︁
𝑢=1

𝑠𝑢 (𝑥) + 𝜌 .

The plan is to use gradient descent (Algorithm 11.1). To this end, let 𝑡 ≤ 𝜏 be
fixed for the remainder of the section and

ℎ̂(𝑥) = 𝜂
𝑡∑︁
𝑢=1

𝑠𝑢 (𝑥) and ℎ(𝑥) = 𝜂
𝑡∑︁
𝑢=1

𝑠𝑢 (𝑥) and ℎ̂′ (𝑥) = 𝜂
𝑡∑︁
𝑢=1

𝑠′𝑢 (𝑥) .

In order to apply Corollary 11.5 we need to prove the following:

Lemma 11.20 Given any 𝑡 ≤ 𝜏, the following hold:

(1) Bounded gradients: max𝑥∈𝐾𝑡 ∥ ℎ̂′ (𝑥)∥Σ−1
𝑡

= 𝑂̃ (poly(𝑑, 𝑛)).
(2) Approximate values: max𝑥∈𝐾𝑡 |ℎ(𝑥) − ℎ̂(𝑥) | ≤

𝜌

6 .
(3) Approximate gradients: max𝑥,𝑦∈𝐾𝑡

〈
ℎ′ (𝑥) − ℎ̂′ (𝑥), 𝑥 − 𝑦

〉
≤ 𝜌

6 .

Lemma 11.20 when combined with Corollary 11.5 shows that Algorithm 11.1
when run with 𝐴 = Σ−1

𝑡 and 𝐾 = 𝐾𝑡 and gradient function ℎ̂′ (𝑥) = 𝜂∑𝑡
𝑢=1 𝑠𝑢 (𝑥)

and 𝑛 = 𝑂̃ (poly(𝑛, 𝑑)), returns a point 𝑥 satisfying (11.13).

Exercise 11.21 ⋆⋆ Prove Lemma 11.20.

11.8 Constraints

Like in Chapter 10, the analysis in this chapter depends on a complicated set of
constraints on the parameters, which are given below.
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11.2.a 𝜎
√
𝑑 ≤ 1 11.2.b 40𝑑𝐿2

𝜀𝜂𝜆
≤ 2𝑛

11.2.c 2𝑑2

𝜎2 + 4𝜂2𝑑𝑛𝐿 + 𝜂𝐶𝜏 + 2𝜂 + 𝑑𝐿
𝜆

≤ 𝜌 11.2.d 3𝜂𝜆𝐿2√𝑑𝑛 ≤ 1
2

11.2.e 𝑑𝐿
𝜆

+ 𝜂𝐶𝜏 + 𝜂
(
1 + 10

𝜀𝜆

)
≤ 𝜌 11.2.f 𝜂𝜆𝜎

√
𝑑

𝜀 (1−𝜆) ≤ 1

11.2.g 1 + 2𝑑2

𝜎2 + 4𝜂2𝑑𝑛𝐿 + 2𝜂𝐶𝜏 ≤ 𝜌 11.2.h 𝜌 ≤ 1−𝛾
96𝐿𝜆2

Table 11.2: Constraints on the parameters used in the analysis of Algorithm 11.3

You can check that the constraints are satisfied when

𝜆 =
2

𝐶𝑑2𝐿3 𝜂 =

√︁
𝑑/𝑛
𝐶𝐿

𝛾 = 2− 1
1+𝑑𝐿

𝜎2 =
1
𝑑𝐿4 𝜌 = 𝐶𝑑3𝐿4 𝜀 =

𝑑2.5𝐶3𝐿6
√
𝑛

,

where 𝐶 > 0 is a suitably large absolute constant.

Remark 11.22 Let us comment on where there might be room for improvement
and on the tightness of the choices of the parameters. First, it seems nearly
essential that 1 − 𝛾 = 𝑂 (1/𝑑). But satisfying Table 11.2.c ensures that 𝑑

𝜆
≤ 𝜌

and satisfying Table 11.2.h ensures that 𝜌 ≤ (1 − 𝛾)/𝜆2, which means that
𝜆 ≤ 1−𝛾

𝑑
= 𝑂 (1/𝑑2). But 𝐶𝜏 = 1

𝜆

√
𝑑𝑛, so the regret with this choice of 𝜆 is at

least 1
𝜆

√
𝑑𝑛 = 𝑑2.5√𝑛, which is the rate achieved. The

√
𝑑 in 𝐶𝜏 arises from a

union bound that may be loose. If this could be improved to 𝐶𝜏 = 1
𝜆

√
𝑛, then

the regret would become 𝑑2√𝑛.

11.9 Notes

11.i: The algorithm and analysis here is a refined version of the algorithm
proposed by Fokkema et al. (2024). The restarting has been used to handle
adversarial losses by a number of authors (Hazan and Li, 2016; Bubeck et al.,
2017; Suggala et al., 2021). The gadget used here most closely resembles that
by Suggala et al. (2021). The main difference is the mechanism for deciding
when to decay the inverse covariance. At a high level both decay the inverse
covariance when the focus region changes too much. They use an argument
based on reduction of volume, which is less computationally efficient than the
more algebraic calculations used in Algorithm 11.3.

11.ii: We mentioned that the ellipsoid method can replace gradient descent
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for approximately minimising a near-convex function. We adopt the notation
and assumptions in Theorem 11.4. Let us additionally assume access to a
separation oracle for 𝐾 and extend ℎ̂′ : 𝐾 → R𝑑 to ℎ̂′ : R𝑑 → R𝑑 by
defining ℎ̂′ (𝑥) to be the output of the separation oracle for 𝑥 ∉ 𝐾. Let 𝐸1 be
an ellipsoid such that 𝐾 ⊂ 𝐸1 and define (𝐸𝑘) centered at (𝑥𝑘) inductively by
𝐸𝑘+1 = mvee(𝐸𝑘 ∩ {𝑥 : ⟨ℎ̂′ (𝑥𝑘), 𝑥 − 𝑥𝑘⟩ ≤ 0}). Let 𝑥 ∈ 𝐾 be arbitrary and
suppose that ℎ̂(𝑥) ≤ ℎ̂(𝑥𝑘) − 2𝜀0 − 𝜀1. Then

⟨ℎ̂′ (𝑥𝑘), 𝑥 − 𝑥𝑘⟩ ≤ ⟨ℎ′ (𝑥𝑘), 𝑥 − 𝑥𝑘⟩ + 𝜀1

≤ ℎ(𝑥) − ℎ(𝑥𝑘) + 𝜀1

≤ ℎ̂(𝑥) − ℎ̂(𝑥𝑘) + 2𝜀0 + 𝜀1

≤ 0 ,

which means that 𝑥 ∈ 𝐾𝑘+1. Following the standard argument of the ellipsoid
method shows that with 𝑚 = 𝑂 (𝑑2 log(𝐺/max(𝜀0, 𝜀1)) it holds that

min
𝑘≤𝑚

ℎ̂(𝑥𝑘) ≤ inf
𝑥∈𝐾

ℎ̂(𝑥) + 4𝜀0 + 2𝜀1 .

11.iii: The running time per round of Algorithm 11.3 depends polynomially
on 𝑡. The reason is two-fold: (1) The focus region 𝐾𝑡 has at least 𝑡 quadratic
constraints, which means the projection in Line 12 involves a large number of
constraints. (2) Approximately maximising the empirical regret in Line 13
requires storing and accumulating all previous data during the approximate
convex optimisation procedure. The following exercise is quite speculative:

Exercise 11.23 ⋆⋆⋆? Suppose that 𝐾 is represented as a polytope or via
a separation oracle. Modify Algorithm 11.3 to have𝑂 (poly(𝑑, log(𝑛))) running
time per round. The following is a suggestion only:
(1) Show that the focus region can be updated only 𝑂̃ (𝑑) times when the
ellipsoid 𝐸 (𝜇𝑡 , Σ𝑡 ) changes dramatically.
(2) Show that the optimisation procedure in Line 13 can be warm-started or
implemented in a streaming fashion to reduce the complexity per round.

11.iv: Like Algorithm 10.2 from the previous chapter, the analysis of Al-
gorithm 11.3 relies on a complex and moderately non-explicit parameters. In
principle you can calculate the constants explicitly, but in practice the resulting
choices will be overly conservative. And the problem that poor approximations
of the optimal constants may lead to linear regret are even worse here, thanks to
the additional constants that define the decay of the inverse covariance and the
restart condition.
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The purpose of this chapter is to introduce and analyse the surrogate loss functions
used in Chapters 10 and 11. The results are stated in as much generality as
possible to facilitate their use in future applications. In case you want a quick
summary of the results, read this section for the basic definitions and then head
directly to Section 12.9.

Suppose that 𝑓 : R𝑑 → R is convex and 𝑋 is a random vector in R𝑑 . We
are interested in the problem of estimating the entire function 𝑓 from a single
observation 𝑌 = 𝑓 (𝑋) + 𝜀 where E[𝜀 |𝑋] = 0 and E[exp(𝜀2) |𝑋] ≤ 2. Given a
parameter 𝜆 ∈ (0, 1), define the surrogate by

𝑠(𝑥) = E
[(

1 − 1
𝜆

)
𝑓 (𝑋) + 1

𝜆
𝑓 ((1 − 𝜆)𝑋 + 𝜆𝑥)

]
, (12.1)

which is plotted in Figures 12.1 and 12.2. We saw this surrogate in Chapters 6
and 9 with 𝜆 = 1/2 and where 𝑋 was supported on an ellipsoid. For the
remainder we assume that the law of 𝑋 is Gaussian with mean 𝜇 and covariance
Σ. The density of 𝑋 with respect to the Lebesgue measure is

𝑝(𝑥) =
(

1
2𝜋

)𝑑/2 √︁
detΣ−1 exp

(
−1

2
∥𝑥 − 𝜇∥2

Σ−1

)
.

We also make use of a quadratic approximation of the surrogate defined by

𝑞(𝑥) = ⟨𝑠′ (𝜇), 𝑥 − 𝜇⟩ + 1
4
∥𝑥 − 𝜇∥2

𝑠′′ (𝜇) ,

which is related to the second-order expansion of 𝑠 at 𝜇 but the zeroth-order
term is dropped and the leading constant of the quadratic term is 1

4 rather than 1
2 .

Since we dropped the zeroth order term you should not expect that 𝑞(𝑥) ≈ 𝑠(𝑥).
Rather we will see that 𝑞(𝑥) − 𝑞(𝜇) is comparable to 𝑠(𝑥) − 𝑠(𝜇) for suitable 𝑥.

196
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Assumptions and logarithmic factors Because the analysis is quite intricate
and we are not so concerned by constants and logarithmic factors, we make the
following assumption:

Assumption 12.1 The following hold:

(1) Convexity: 𝑓 : R𝑑 → R is convex and 𝐾 is a convex body.
(2) Gaussian iterates: 𝑋 has law N (𝜇, Σ) and 𝜇 ∈ 𝐾 .
(3) Subgaussian responses: 𝑌 = 𝑓 (𝑋) + 𝜀 with

E[𝜀 |𝑋] = 0 and E[exp(𝜀2) |𝑋] ≤ 2 .

(4) Boundedness: 𝛿 ∈ (0, 1) is a constant such that

max
(
𝑑, lip( 𝑓 ), sup

𝑥∈𝐾
| 𝑓 (𝑥) |, ∥Σ∥, ∥Σ−1∥, 1/𝜆

)
≤ 1
𝛿
.

Moreover, 𝜆 ≤ 1
𝑑+1 .

We let 𝐿 be a logarithmic constant:

𝐿 = 𝐶 log(1/𝛿) .

where 𝐶 > 0 is a large non-specified universal positive constant. We also let
(𝐶𝑘) be a collection of 𝑘-dependent universal positive constants.
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Figure 12.1: The figure plots the surrogate for different choices of 𝜇 and Σ

with 𝜆 = 1
2 in all figures. Notice that the surrogate is always optimistic in the

sense that 𝑠(𝑥) ≤ 𝑓 (𝑥) for all 𝑥. Moreover, the quality of the approximation
depends on whether or not 𝑥 is in the region where the relevant Gaussian is
well-concentrated and the amount of curvature of 𝑓 in that region.
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Figure 12.2: The figure plots the surrogate for 𝜇 and Σ constant and different
choices of 𝜆. You can see that smaller 𝜆 yields a smoother surrogate, but also
one that has more approximation error.
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12.1 Smoothing

Our analysis would often be made considerably easier if 𝑓 ∈ ℱsm. Let 𝜚 =

exp(−𝐿/200), which is a miniscule constant and let

𝑓𝜚 = 𝑓 ★ 𝜙𝜚

where 𝜙𝜚 is the smoothing kernel defined in Section 3.8. The following lemma
is nothing but a rewriting of Proposition 3.23.

Lemma 12.2 The following hold:

(1) 𝑓𝜚 is twice differentiable and 𝛽-smooth with 𝛽 = (𝑑 + 1) (𝑑 + 6) lip( 𝑓 )/𝜚.
(2) ∥ 𝑓𝜚 − 𝑓 ∥∞ ≤ 𝜚 lip( 𝑓 ).

The surrogate loss associated with the smoothed loss 𝑓𝜚 is

𝑠𝜚 (𝑥) = E
[(

1 − 1
𝜆

)
𝑓𝜚 (𝑋) +

1
𝜆
𝑓𝜚 ((1 − 𝜆)𝑋 + 𝜆𝑥)

]
.

By definition, 𝜚 is tiny, which means that 𝑠𝜚 may not be that smooth, but it is
just enough for our purposes.

12.2 Elementary properties

An immediate consequence of the definitions is that 𝑠 is convex, Lipschitz and a
lower bound on 𝑓 .

Lemma 12.3 The function 𝑠 in (12.1) is well-defined, infinitely differentiable
and

(1) 𝑠 is convex; and
(2) 𝑠(𝑥) ≤ 𝑓 (𝑥) for all 𝑥 ∈ R𝑑; and
(3) lip(𝑠) ≤ lip( 𝑓 ).

Proof That 𝑠 is well-defined, infinitely differentiable and Lipschitz is left as
an exercise. Part (1) is immediate from the convexity of 𝑓 . Part (2) also uses
convexity of 𝑓 and Jensen’s inequality:

𝑠(𝑥) = E
[(

1 − 1
𝜆

)
𝑓 (𝑋) + 1

𝜆
𝑓 ((1 − 𝜆)𝑋 + 𝜆𝑥)

]
≤ E

[(
1 − 1

𝜆

)
𝑓 (𝑋) + 1

𝜆
[(1 − 𝜆) 𝑓 (𝑋) + 𝜆 𝑓 (𝑥)]

]
= 𝑓 (𝑥) . □
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Exercise 12.4 ⋆ Prove the omitted parts of Lemma 12.3.

Perhaps the most important property of 𝑠 is that it is not too far below 𝑓 on
an ellipsoidal region about 𝜇. Establishing this is quite involved, however, and
relies on a better understanding of the Hessian of 𝑠.

12.3 Properties of the Hessian

The next important property is a kind of continuity of the Hessian.

Proposition 12.5 If 𝜆 ∥𝑥 − 𝑦∥Σ−1 ≤ 𝐿−1/2, then 𝑠′′ (𝑥) ⪯ 2𝑠′′ (𝑦) + 𝛿Σ−1.

Proof The interesting part is to establish a version of the claim for the smoothed
surrogate loss, which is followed by a mundane comparison.

Step 1: Smoothed analysis Let 𝜀 =
𝜆(𝑦−𝑥 )

1−𝜆 and assume by changing coordinates
that 𝜇 = 0. By definition,

𝑠′′𝜚 (𝑥) = 𝜆E
[
𝑓 ′′𝜚 ((1 − 𝜆)𝑋 + 𝜆𝑥)

]
= 𝜆

∫
R𝑑
𝑓 ′′𝜚 ((1 − 𝜆)𝑧 + 𝜆𝑥)𝑝(𝑧) d𝑧

= 𝜆

∫
R𝑑
𝑓 ′′𝜚 ((1 − 𝜆)𝑤 + 𝜆𝑦)𝑝 (𝑤 + 𝜀) d𝑤 ,

where the exchange of integral and derivatives is justified by the assumption
that lip( 𝑓 ) < ∞. The last equality holds by a change of coordinates. Given a set
𝐵 ⊂ R𝑑 let

𝐼 (𝐵) = 𝜆
∫
𝐵

𝑓 ′′𝜚 ((1 − 𝜆)𝑤 + 𝜆𝑦)𝑝 (𝑤 + 𝜀) d𝑤 .

The plan is to construct a set 𝐴 for which P(𝑋 ∉ 𝐴) is negligible and 𝐼 (𝐴) ⪯
2𝑠′′𝜚 (𝑦) and then argue that 𝐼 (𝐴𝑐) is negligible. Consider the density ratio

𝑝(𝑤 + 𝜀)
𝑝(𝑤) = exp

(
−1

2
∥𝑤 + 𝜀∥2

Σ−1 +
1
2
∥𝑤∥2

Σ−1

)
= exp

(
−1

2
∥𝜀∥2

Σ−1 − ⟨𝑤, 𝜀⟩Σ−1

)
.
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Next, let 𝐴 =
{
𝑤 : − 1

2 ∥𝜀∥2
Σ−1 − ⟨𝑤, 𝜀⟩Σ−1 ≤ log(2)

}
, which is chosen so that

𝐼 (𝐴) = 𝜆
∫
𝐴

𝑓 ′′𝜚 ((1 − 𝜆)𝑤 + 𝜆𝑦)𝑝(𝑤 + 𝜀) d𝑤

⪯ 2𝜆
∫
𝐴

𝑓 ′′𝜚 ((1 − 𝜆)𝑤 + 𝜆𝑦)𝑝(𝑤) d𝑤

⪯ 2𝜆
∫
R𝑑
𝑓 ′′𝜚 ((1 − 𝜆)𝑤 + 𝜆𝑦)𝑝(𝑤) d𝑤

= 2𝑠′′𝜚 (𝑦) ,

where the first inequality uses the fact that 𝑓𝜚 is convex so that 𝑓 ′′𝜚 ⪰ 0 and
the definition of 𝐴. The second follows from convexity of 𝑓𝜚 . Moving now to
bound the integral over 𝐴𝑐. Recall the definition of 𝛽 in Lemma 12.2. Then, by
convexity of the spectral norm,

∥𝐼 (𝐴𝑐)∥ =




𝜆 ∫

𝐴𝑐
𝑓 ′′𝜚 ((1 − 𝜆)𝑤 + 𝜆𝑦)𝑝(𝑤 + 𝜀) d𝑤






≤ 𝜆𝛽

∫
𝐴𝑐
𝑝(𝑤 + 𝜀) d𝑤

= 𝜆𝛽P(𝑋 − 𝜀 ∈ 𝐴𝑐)

= 𝜆𝛽P
(
−1

2
∥𝜀∥2

Σ−1 −
〈
𝑋 − 𝜀, Σ−1𝜀

〉
> log(2)

)
≤ 𝜆𝛽 exp

©­­«−
(
log(2) − 1

2 ∥𝜀∥2
Σ−1

)2

2 ∥𝜀∥2
Σ−1

ª®®¬ ,
where in the final inequality we used Theorem B.14 and the fact that

〈
𝑋, Σ−1𝜀

〉
has law N (0, ∥𝜀∥2

Σ−1 ). As well as the fact that 1
2 ∥𝜀∥

2
Σ−1 ≤ log(2), which holds

for suitably large 𝐿 by the assumptions in the proposition statement. Therefore,

𝑠′′𝜚 (𝑥) ⪯ 2𝑠′′𝜚 (𝑦) + 𝜆𝛽 exp
©­­«−

(
log(2) − 1

2 ∥𝜀∥2
Σ−1

)2

2 ∥𝜀∥2
Σ−1

ª®®¬1
⪯ 2𝑠′′𝜚 (𝑦) + 𝜆𝛽 exp

(
− 𝐿

100

)
1 , (12.2)

where the last inequality follows because 𝜆 ≤ 1/2 by Assumption 12.1 and the
conditions in the statement that 𝜆 ∥𝑥 − 𝑦∥Σ−1 ≤ 1/

√
𝐿 so that

∥𝜀∥2
Σ−1 =

(
𝜆

1 − 𝜆

)2
∥𝑥 − 𝑦∥2

Σ−1 ≤
1

𝐿 (1 − 𝜆)2 ≤ 4
𝐿

≤ log(2) .
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Step 2: Comparison We now compare 𝑠′′ and 𝑠′′𝜚 . Let

𝑀 (𝑧) = Σ−1/2𝑧𝑧⊤Σ−1/2 − 1 .

Then, using convexity of the spectral norm and Lemma 12.2,


Σ1/2 (𝑠′′ (𝑥) − 𝑠′′𝜚 (𝑥))Σ1/2



 (a)= 𝜆

(1 − 𝜆)2





∫
R𝑑

( 𝑓 − 𝑓𝜚) ((1 − 𝜆)𝑧 + 𝜆𝑥)𝑀 (𝑧)𝑝(𝑧) d𝑧






(b)

≤ 𝜆𝜚 lip( 𝑓 )
(1 − 𝜆)2

∫
R𝑑

∥𝑀 (𝑧)∥ 𝑝(𝑧) d𝑧

(c)

=
𝜆𝜚 lip( 𝑓 )
(1 − 𝜆)2

∫
R𝑑




Σ−1/2𝑧𝑧⊤Σ−1/2 − 1



 𝑝(𝑧) d𝑧

(d)

≤ (𝑑 + 1)𝜆𝜚 lip( 𝑓 )
(1 − 𝜆)2 , (12.3)

where (a) follows by (twice) integrating by parts, (b) by Lemma 12.2, (c)
by substituting the definition of 𝑀 and (d) since for Σ−1/2𝑧 under 𝑝(𝑧) is a
standard Gaussian and for𝑊 ∼ N (0,1), E[∥𝑊𝑊⊤ −1∥] ≤ E[∥𝑊𝑊⊤∥] + 1 =

E[∥𝑊 ∥2] + 1 = 𝑑 + 1. Therefore,

𝑠′′ (𝑥)
(a)

⪯ 𝑠′′𝜚 (𝑥) +
(𝑑 + 1)𝜆𝜚 lip( 𝑓 )

(1 − 𝜆)2 Σ−1

(b)

⪯ 2𝑠′′𝜚 (𝑦) + 𝜆𝛽 exp
(
− 𝐿

100

)
1 + (𝑑 + 1)𝜆𝜚 lip( 𝑓 )

(1 − 𝜆)2 Σ−1

(c)

⪯ 2𝑠′′ (𝑦) + 𝜆𝛽 exp
(
− 𝐿

100

)
1 + 2(𝑑 + 1)𝜆𝜚 lip( 𝑓 )

(1 − 𝜆)2 Σ−1

(d)

⪯ 2𝑠′′ (𝑦) + 𝛿Σ−1 ,

where (a) follows from (12.3), (b) from (12.2) and (c) from (12.3) again.
Lastly, (d) follows from the definitions of 𝜚 = exp(−𝐿/200) and 𝛽 = (𝑑 +
1) (𝑑 + 6) lip( 𝑓 )/𝜚 in Section 12.1 and Assumption 12.1 that 𝛿1 ⪯ Σ−1. □

Since 𝑓 is Lipschitz and 𝑠 is a smoothing of 𝑓 , the Hessian of 𝑠 cannot be too
large relative to ∥Σ−1∥ as the next proposition shows.

Proposition 12.6 For any 𝑧 ∈ R𝑑:

(1) ∥𝑠′′ (𝑧)∥ ≤ 𝜆 lip( 𝑓 )
1−𝜆

√︁
𝑑∥Σ−1∥.

(2)


Σ1/2𝑠′′ (𝑧)Σ1/2



 ≤ 𝜆 lip( 𝑓 )
1−𝜆

√︁
𝑑 ∥Σ∥.

Proof Assume for a moment that 𝑓 is twice differentiable. Then, exchanging
derivatives and the expectation and integrating by parts shows that for any
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𝜂 ∈ S𝑑−1
1 ,

𝜂⊤𝑠′′ (𝑧)𝜂 = 𝜆E[𝜂⊤ 𝑓 ′′ ((1 − 𝜆)𝑋 + 𝜆𝑧)𝜂]

=
𝜆

1 − 𝜆E
[
⟨𝜂, 𝑓 ′ ((1 − 𝜆)𝑋 + 𝜆𝑧)⟩⟨𝜂, Σ−1 (𝑋 − 𝜇)⟩

]
≤ 𝜆 lip( 𝑓 )

1 − 𝜆 E
[
∥Σ−1 (𝑋 − 𝜇)∥

]
≤ 𝜆 lip( 𝑓 )

1 − 𝜆 ∥Σ−1∥1/2E [∥𝑋 − 𝜇∥Σ−1 ]

≤ 𝜆 lip( 𝑓 )
1 − 𝜆

√︁
𝑑∥Σ−1∥ .

Then use the fact that ∥𝑠′′ (𝑧)∥ = max𝜂∈S𝑑−1
1

𝜂⊤𝑠′′ (𝑧)𝜂. The second part follows
from the same argument. In case 𝑓 is not twice-differentiable, then apply the
above argument to 𝑠𝜚 and 𝑓𝜚 and pass to the limit as 𝜚 → 0. Alternatively,
use direct means to justify the second equality above with ⟨·, 𝑓 ′ (·)⟩ replaced
with the directional derivative 𝐷 𝑓 (·) [·]. The second part follows from the same
argument and is left as an exercise. □

Exercise 12.7 ⋆ Prove the second part of Proposition 12.6.

Lastly, we compare the Hessian of the surrogate to the mean Hessian of the
loss 𝑓 .

Proposition 12.8 Suppose that 𝜆 ≤ 1
𝑑𝐿2 . Then

lim
𝜚→0

E[ 𝑓 ′′𝜚 (𝑋)] ⪯
1
𝜆

[
2𝑠′′ (𝜇) + 2𝛿Σ−1] .

Note the limit of the smoothing is used because 𝑓 may not be twice differen-
tiable. This corresponds to viewing the Hessian of 𝑓 as an operator on suitable
distributions.

Proof Let 𝑍 have law N (𝜇, 2−𝜆
𝜆

Σ), which is chosen so that (1 − 𝜆)𝑋 + 𝜆𝑍
has the same law as 𝑋 . Therefore,

E[𝑠′′𝜚 (𝑍)] = 𝜆E[ 𝑓 ′′𝜚 ((1 − 𝜆)𝑋 + 𝜆𝑍)] = 𝜆E[ 𝑓 ′′𝜚 (𝑋)] .

Passing to the limit shows that

E[𝑠′′ (𝑍)] = 𝜆 lim
𝜚→0

E[ 𝑓 ′′𝜚 (𝑋)] .

Define event 𝐴 = {𝜆∥𝑍 − 𝜇∥Σ−1 ≤ 𝐿−1/2}. By Proposition 12.5,

1𝐴𝑠
′′ (𝑍) ⪯ 2𝑠′′ (𝜇) + 𝛿Σ−1 . (12.4)
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By the definition of 𝑍 ,
√︃

𝜆
2−𝜆Σ

−1/2 (𝑍 − 𝜇) has law N (0,1). Therefore, by
Proposition B.12 and Lemma B.3,

P (𝐴𝑐) = P
(
𝜆 ∥𝑍 − 𝜇∥Σ−1 > 𝐿

−1/2
)

= P ©­«






√︂

𝜆

2 − 𝜆Σ
−1/2 (𝑍 − 𝜇)






2

>
1

𝜆(2 − 𝜆)𝐿
ª®¬

≤ 2 exp
(
− 3

8𝑑𝜆(2 − 𝜆)𝐿

)
≤ 2 exp

(
−3𝐿

16

)
. since 𝜆 ≤ 1

𝑑𝐿2

Combining the above display with (12.4) and Proposition 12.6 shows that

E[𝑠′′ (𝑍)] = E[1𝐴𝑠′′ (𝑍) + 1𝐴𝑐 𝑠
′′ (𝑍)]

⪯ 2𝑠′′ (𝜇) + 𝛿Σ−1 + P(𝐴𝑐)𝜆 lip( 𝑓 )
1 − 𝜆

√︁
𝑑∥Σ−1∥1

⪯ 2𝑠′′ (𝜇) + 𝛿Σ−1 + 2 exp
(
−3𝐿

16

)
𝜆 lip( 𝑓 )

1 − 𝜆
√︁
𝑑∥Σ−1∥1

⪯ 2𝑠′′ (𝜇) + 2𝛿Σ−1 ,

where the final inequality follows from the definition of 𝐿 and by Assump-
tion 12.1. □

12.4 Properties of the quadratic surrogate

Recall that the quadratic surrogate is

𝑞(𝑥) = ⟨𝑠′ (𝜇), 𝑥 − 𝜇⟩ + 1
4
∥𝑥 − 𝜇∥2

𝑠′′ (𝜇) .

Obviously 𝑞 inherits convexity from 𝑠. By Proposition 12.5, 𝑠 has a nearly
constant Hessian in a region about 𝜇 from which it follows that 𝑞(𝑥) − 𝑞(𝜇) ≲
𝑠(𝑥) − 𝑠(𝜇) on a region about 𝜇 as the follow proposition shows:

Proposition 12.9 Suppose that 𝜆∥𝑥 − 𝜇∥Σ−1 ≤ 1√
𝐿

, then

𝑠(𝜇) − 𝑠(𝑥) ≤ 𝑞(𝜇) − 𝑞(𝑥) + 𝛿

𝜆2 .

Proof By Proposition 12.5, for any 𝑦 ∈ [𝜇, 𝑥],

𝑠′′ (𝑦) ⪰ 1
2

[
𝑠′′ (𝜇) − 𝛿Σ−1] .
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By Taylor’s theorem there exists a 𝑦 ∈ [𝜇, 𝑥] such that

𝑠(𝑥) = 𝑠(𝜇) + ⟨𝑠′ (𝜇), 𝑥 − 𝜇⟩ + 1
2
∥𝑥 − 𝜇∥2

𝑠′′ (𝑦)

≥ 𝑠(𝜇) + ⟨𝑠′ (𝜇), 𝑥 − 𝜇⟩ + 1
4
∥𝑥 − 𝜇∥2

𝑠′′ (𝜇) −
𝛿

4
∥𝑥 − 𝜇∥2

Σ−1

≥ 𝑠(𝜇) + ⟨𝑠′ (𝜇), 𝑥 − 𝜇⟩ + 1
4
∥𝑥 − 𝜇∥2

𝑠′′ (𝜇) −
𝛿

4𝜆2𝐿

≥ 𝑠(𝜇) + 𝑞(𝑥) − 𝛿

𝜆2 .

The result follows by rearranging and because 𝑞(𝜇) = 0. □

12.5 Lower bound

We have shown that 𝑠 ≤ 𝑓 holds everywhere. In general there is no uniform
upper bound on the entire function 𝑓 − 𝑠, but 𝑓 (𝜇) − 𝑠(𝜇) can be upper bounded
in terms of the curvature of 𝑠 as 𝜇.

Proposition 12.10 Provided that 𝜆 ≤ 1
𝑑𝐿2 ,

𝑓 (𝜇) ≤ E[ 𝑓 (𝑋)] ≤ 𝑠(𝜇) + 2
𝜆

tr(𝑠′′ (𝜇)Σ) + 2𝛿𝑑
𝜆

.

Proof The first inequality is immediate from Jensen’s inequality and because
E[𝑋] = 𝜇. Let 𝑍 be a random variable that is independent of 𝑋 and has law
N (𝜇, 𝜌2Σ) where 𝜌2 = 2−𝜆

𝜆
is chosen so that (1 − 𝜆)2 + 𝜆2𝜌2 = 1. Then

E[𝑠(𝑍)] = E
[(

1 − 1
𝜆

)
𝑓 (𝑋) + 1

𝜆
𝑓 ((1 − 𝜆)𝑋 + 𝜆𝑍)

]
= E

[(
1 − 1

𝜆

)
𝑓 (𝑋) + 1

𝜆
𝑓 (𝑋)

]
= E [ 𝑓 (𝑋)] ,

where we used the fact that (1 − 𝜆)𝑋 + 𝜆𝑍 has the same law as 𝑋 . Let us
now compare E[𝑠(𝑍)] to 𝑠(𝜇). By Taylor’s theorem, for every 𝑧 ∈ R𝑑 there
exists a 𝜉𝑧 ∈ [𝜇, 𝑧] such that 𝑠(𝑧) = 𝑠(𝜇) + 𝑠′ (𝜇)⊤ (𝑧 − 𝜇) + 1

2 ∥𝑧 − 𝜇∥
2
𝑠′′ ( 𝜉𝑧 ) . By

Proposition 12.5, if 𝑧 is close enough to 𝜇, then 𝑠′′ (𝑧) is close to 𝑠′′ (𝜇). Define

𝐴 =
{
𝑧 ∈ R𝑑 : 𝜆 ∥𝑧 − 𝜇∥Σ−1 ≤ 𝐿−1/2} .

Note that 𝜇 ∈ 𝐴 and that 𝐴 is convex. Hence, if 𝑧 ∈ 𝐴, then 𝜉𝑧 ∈ 𝐴 and by
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Proposition 12.5, 𝑠′′ (𝜉𝑧) ≤ 2𝑠′′ (𝜇) + 𝛿Σ−1. Then

E[𝑠(𝑍)] = E
[
𝑠(𝜇) + 𝑠′ (𝜇)⊤ (𝑍 − 𝜇) + 1

2
∥𝑍 − 𝜇∥2

𝑠′′ ( 𝜉𝑍 )

]
= 𝑠(𝜇) + E

[
1𝐴(𝑍)

2
∥𝑍 − 𝜇∥2

𝑠′′ ( 𝜉𝑍 )

]
𝐷

+E
[
1𝐴𝑐 (𝑍)

2
∥𝑍 − 𝜇∥2

𝑠′′ ( 𝜉𝑍 )

]
𝐸

.

The dominant term 𝐷 is bounded using Proposition 12.5 and the definition of 𝐴
by

𝐷 = E
[
1𝐴(𝑍)

2
∥𝑍 − 𝜇∥2

𝑠′′ ( 𝜉𝑍 )

]
≤ E

[
∥𝑍 − 𝜇∥2

𝑠′′ (𝜇) +
𝛿

2
∥𝑍 − 𝜇∥2

Σ−1

]
by Proposition 12.5

= tr
(
𝑠′′ (𝜇)E

[
(𝑍 − 𝜇) (𝑍 − 𝜇)⊤

] )
+ 𝛿

2
E

[
∥𝑍 − 𝜇∥2

Σ−1

]
= 𝜌2 tr (𝑠′′ (𝜇)Σ) + 𝛿𝑑𝜌2

2

≤ 2
𝜆

tr (𝑠′′ (𝜇)Σ) + 𝛿𝑑

𝜆
. since 𝜌2 ≤ 2

𝜆

Collecting the results shows that

E[ 𝑓 (𝑋)] = E[𝑠(𝑍)] ≤ 𝑠(𝜇) + 2
𝜆

tr (𝑠′′ (𝜇)Σ) + 𝛿𝑑

𝜆
+ 𝐸 .

All that remains is to bound the error term, which follows by showing that
𝑍 ∈ 𝐴𝑐 holds with vanishingly small probability.

Bounding the error term Let

𝑀 = sup
𝑧∈R𝑑




Σ1/2𝑠′′ (𝑧)Σ1/2



 ≤ 𝜆 lip( 𝑓 )

1 − 𝜆

√︂
𝑑

𝛿
, (12.5)

where the inequality follows from Proposition 12.6 and the assumption that
∥Σ∥ ≤ 1

𝛿
. Let𝑊 have law N (0,1) and note that 1

𝜌
Σ−1/2 (𝑍 − 𝜇) also has law
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N (0,1). Then,

𝐸 =
1
2
E

[
∥𝑍 − 𝜇∥2

𝑠′′ ( 𝜉𝑍 ) 1𝐴𝑐 (𝑍)
]

≤ 𝑀

2
E

[
∥𝑍 − 𝜇∥2

Σ−1 1𝐴𝑐 (𝑍)
]

=
𝑀𝜌2

2
E

[
∥𝑊 ∥2 1𝐴𝑐 (𝑍)

]
≤ 𝑀𝜌2

2

√︃
E

[
∥𝑊 ∥4

Σ−1

]
P(𝑍 ∉ 𝐴)

=
𝑀𝜌2

2

√︄
(𝑑2 + 2𝑑)P

(
∥𝑊 ∥2 ≥ 1

𝜆2𝜌2𝐿

)
≤ 𝑀𝑑𝜌2

√︄
P

(
∥𝑊 ∥2 ≥ 1

𝜆2𝜌2𝐿

)
. (12.6)

where we used the definition of 𝑀 , Cauchy-Schwarz and Proposition A.3. By
Proposition B.12,



∥𝑊 ∥2


𝜓1

≤ 3𝑑 and by Lemma B.3 and the assumption that
𝜆 ≤ 1

𝑑𝐿2 ,

P
(
∥𝑊 ∥2 ≥ 1

𝜆2𝜌2𝐿

)
≤ 2 exp

(
− 1

3𝑑𝜆2𝜌2𝐿

)
≤ 2 exp

(
− 1

6𝑑𝜆𝐿

)
≤ 2 exp

(
−𝐿

6

)
.

Combining the above with (12.6) and (12.5) and naively simplifying the constants
by ensuring 𝐿 is large enough shows that 𝐸 ≤ 𝛿𝑑

𝜆
. □

Corollary 12.11 Suppose that 𝜆 ≤ 1
𝑑𝐿2 and 𝜆 ∥𝑥 − 𝜇∥Σ−1 ≤ 1√

𝐿
. Then

E[ 𝑓 (𝑋)] − 𝑓 (𝑥) ≤ 𝑞(𝜇) − 𝑞(𝑥) + 2
𝜆

tr(𝑠′′ (𝜇)Σ) + 𝛿
[
2𝑑
𝜆

+ 1
𝜆2

]
.

Proof By Lemma 12.3(2) and Proposition 12.10 and Proposition 12.9,

E[ 𝑓 (𝑋)] − 𝑓 (𝑥) ≤ 𝑠(𝜇) − 𝑠(𝑥) + 2
𝜆

tr(𝑠′′ (𝜇)Σ) + 2𝛿𝑑
𝜆

≤ 𝑞(𝜇) − 𝑞(𝑥) + 2
𝜆

tr(𝑠′′ (𝜇)Σ) + 𝛿
[
2𝑑
𝜆

+ 1
𝜆2

]
. □
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12.6 Estimation

The surrogate loss function can be estimated from 𝑋 and 𝑌 using a change of
measure. Precisely,

𝑠(𝑧) =
∫
R𝑑

((
1 − 1

𝜆

)
𝑓 (𝑥) + 1

𝜆
𝑓 ((1 − 𝜆)𝑥 + 𝜆𝑧)

)
𝑝(𝑥) d𝑥

=

∫
R𝑑

(
1 − 1

𝜆
+

𝑝
(
𝑥−𝜆𝑧
1−𝜆

)
𝜆(1 − 𝜆)𝑑 𝑝(𝑥)

)
𝑓 (𝑥)𝑝(𝑥) d𝑥

=

∫
R𝑑

(
1 − 1

𝜆
+ 𝑟 (𝑥, 𝑧)

𝜆

)
𝑓 (𝑥)𝑝(𝑥) d𝑥 , (12.7)

where 𝑟 (𝑥, 𝑧) is the change of measure defined by

𝑟 (𝑥, 𝑧) =
(

1
1 − 𝜆

)𝑑 𝑝 (
𝑥−𝜆𝑧
1−𝜆

)
𝑝(𝑥) , (12.8)

which satisfies

𝜕𝑟 (𝑥, 𝑧)
𝜕𝑧

=
𝜆𝑟 (𝑥, 𝑧)

1 − 𝜆 Σ−1
(
𝑥 − 𝜆𝑧
1 − 𝜆 − 𝜇

)
𝜕2𝑟 (𝑥, 𝑧)
𝜕𝑧2 =

𝜆2𝑟 (𝑥, 𝑧)
(1 − 𝜆)2

[
Σ−1

(
𝑋 − 𝜆𝑧
1 − 𝜆 − 𝜇

) (
𝑋 − 𝜆𝑧
1 − 𝜆 − 𝜇

)⊤
Σ−1 − Σ−1

]
.

Looking at (12.7) and exchanging derivatives and expectations we might estimate
𝑠 and its derivatives by

𝑠(𝑧) =
(
1 − 1

𝜆
+ 𝑟 (𝑋, 𝑧)

𝜆

)
𝑌

𝑠′ (𝑧) = 𝑟 (𝑋, 𝑧)𝑌
1 − 𝜆 Σ−1

(
𝑋 − 𝜆𝑧
1 − 𝜆 − 𝜇

)
𝑠′′ (𝑧) = 𝜆𝑟 (𝑋, 𝑧)𝑌

(1 − 𝜆)2

[
Σ−1

(
𝑋 − 𝜆𝑧
1 − 𝜆 − 𝜇

) (
𝑋 − 𝜆𝑧
1 − 𝜆 − 𝜇

)⊤
Σ−1 − Σ−1

]
.

And indeed, these are unbiased estimators of 𝑠(𝑧), 𝑠′ (𝑧) and 𝑠′′ (𝑧), respectively.

Exercise 12.12 ⋆ Show that E[𝑠(𝑧)] = 𝑠(𝑧) and E[𝑠′ (𝑧)] = 𝑠′ (𝑧) and
E[𝑠′′ (𝑧)] = 𝑠′′ (𝑧) for all 𝑧 ∈ R𝑑 .

The quantity 𝑟 (𝑋, 𝑧), however, is not especially well behaved and for this
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reason we let 𝑟 (𝑥, 𝑧) = min(exp(2), 𝑟 (𝑥, 𝑧)) and define estimators

𝑠(𝑧) =
(
1 − 1

𝜆
+ 𝑟 (𝑋, 𝑧)

𝜆

)
𝑌

𝑠′ (𝑧) = 𝑟 (𝑋, 𝑧)𝑌
1 − 𝜆 Σ−1

(
𝑋 − 𝜆𝑧
1 − 𝜆 − 𝜇

)
𝑠′′ (𝑧) = 𝜆𝑟 (𝑋, 𝑧)𝑌

(1 − 𝜆)2

[
Σ−1

(
𝑋 − 𝜆𝑧
1 − 𝜆 − 𝜇

) (
𝑋 − 𝜆𝑧
1 − 𝜆 − 𝜇

)⊤
Σ−1 − Σ−1

]
.

Remark 12.13 Our notation for these estimators is a little clumsy because
𝑠′ (𝑧) and 𝑠′′ (𝑧) are not the derivatives of 𝑠(𝑧).

Note that while 𝑠 is convex, in general neither 𝑥 ↦→ 𝑠(𝑥) nor 𝑥 ↦→ 𝑠(𝑥) are
(see Figure 12.3). Mostly we are interested in estimating gradients and Hessians
of the surrogate at 𝜇, which satisfy

𝑠′ (𝜇) = 𝑟 (𝑋, 𝜇)𝑌Σ−1 (𝑋 − 𝜇)
(1 − 𝜆)2 .

𝑠′′ (𝜇) = 𝜆𝑟 (𝑋, 𝜇)𝑌
(1 − 𝜆)2

[
Σ−1 (𝑋 − 𝜇) (𝑋 − 𝜇)⊤Σ−1

(1 − 𝜆)2 − Σ−1
]
.

Note that 𝑟 (𝑥, 𝜇) = 𝑟 (𝑥, 𝜇) for all 𝑥 thanks to Lemma 12.16.

Proposition 12.14 Provided that 𝜆∥𝑧 − 𝜇∥Σ−1 ≤
√︃

1
𝐿

. The following hold:

(1) |E[𝑠(𝑧)] − 𝑠(𝑧) | ≤ 𝛿.
(2) ∥E[𝑠′ (𝑧)] − 𝑠′ (𝑧)∥ ≤ 𝛿.
(3) ∥E[𝑠′′ (𝑧)] − 𝑠′′ (𝑧)∥ ≤ 𝛿.

Moreover, E[𝑠(𝜇)] = 𝑠(𝜇) and E[𝑠′ (𝜇)] = 𝑠′ (𝜇) and E[𝑠′′ (𝜇)] = 𝑠′′ (𝜇).

Proof Let 𝐸 be the event that 𝑟 (𝑋, 𝑧) > exp(2). Then

|𝑟 (𝑋, 𝑧) − 𝑟 (𝑋, 𝑧) | ≤ 1𝐸𝑟 (𝑋, 𝑧) .

By Lemma 12.16 in the next section,

𝑟 (𝑋, 𝑧) ≤ exp
(
1 + 𝜆

(1 − 𝜆)2 ⟨𝑋 − 𝜇, 𝑧 − 𝜇⟩Σ−1

)
.

Therefore, using the definition of 𝐸 and the fact that 𝜆 ⟨𝑋 − 𝜇, 𝑧 − 𝜇⟩Σ−1 has
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law N (0, 𝜆2∥𝑧 − 𝜇∥2
Σ−1 ),

P(𝐸) = P(𝑟 (𝑋, 𝑧) > exp(2))

≤ P
(
𝜆 ⟨𝑋 − 𝜇, 𝑧 − 𝜇⟩Σ−1 > (1 − 𝜆)2

)
≤ exp

(
− (1 − 𝜆)4

2𝜆2∥𝑧 − 𝜇∥2
Σ−1

)
by Theorem B.14

≤ exp
(
− (1 − 𝜆)4𝐿

2

)
.

You showed in Exercise 12.12 that 𝑠(𝑧) is an unbiased estimator of 𝑠(𝑧) and
therefore

|E[𝑠(𝑧)] − 𝑠(𝑧) | = |E[𝑠(𝑧) − 𝑠(𝑧)] |

=

����E [
𝑌 (𝑟 (𝑋, 𝑧) − 𝑟 (𝑋, 𝑧))

𝜆

] ����
≤ E

[
1𝐸 |𝑌 |𝑟 (𝑋, 𝑧)

𝜆

]
≤ 1
𝜆
E[𝑌4] 1

4 E[𝑟 (𝑋, 𝑧)4] 1
4
√︁
P(𝐸)

≤ 𝛿 .

where we used Lemma 12.19 and Lemma 12.20 below. The proof parts (2)
and (3) follow the same argument. That the estimators are unbiased when
𝑧 = 𝜇 follows from the observation that 𝑟 (𝑥, 𝜇) = 𝑟 (𝑥, 𝜇) for all 𝑥 and
Exercise 12.12. □

Exercise 12.15 ⋆ Prove Proposition 12.14(2)(3).

12.7 Concentration ( )

In this section we explore the tail behaviour of the estimators in the previous
section. Almost all of the results here are only used as technical lemmas in the
previous/next sections. Recall that 𝑟 is the change of measure function defined
by

𝑟 (𝑥, 𝑧) =
𝑝

(
𝑥−𝜆𝑧
1−𝜆

)
(1 − 𝜆)𝑑 𝑝(𝑥)

and 𝑟 (𝑥, 𝑧) = min(exp(2), 𝑟 (𝑥, 𝑧)) ,

where 𝑝 is the density of the N (𝜇, Σ). The next few lemmas bound the
magnitude, gradients and moments of 𝑟.
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Lemma 12.16 For all 𝑥, 𝑧 ∈ R𝑑 ,

𝑟 (𝑥, 𝑧) ≤ exp
(
1 + 𝜆

(1 − 𝜆)2 ⟨𝑥 − 𝜇, 𝑧 − 𝜇⟩Σ−1

)
.

Proof Let us assume without loss of generality that 𝜇 = 0. By definition,

𝑟 (𝑥, 𝑧) =
𝑝

(
𝑥−𝜆𝑧
1−𝜆

)
(1 − 𝜆)𝑑 𝑝(𝑥)

=
1

(1 − 𝜆)𝑑
exp

(
−1

2





𝑥 − 𝜆𝑧1 − 𝜆





2

Σ−1
+ 1

2
∥𝑥∥2

Σ−1

)
≤ 1

(1 − 𝜆)𝑑
exp

(
𝜆 ⟨𝑥, 𝑧⟩Σ−1

(1 − 𝜆)2

)
≤ exp

(
1 + 𝜆 ⟨𝑥, 𝑧⟩Σ−1

(1 − 𝜆)2

)
,

where in the final inequality we used Assumption 12.1 that 𝜆 ≤ 1
𝑑+1 so that

(1 − 𝜆)−𝑑 ≤ (1 + 1
𝑑
)𝑑 ≤ exp(1). □

The next lemma loosely bounds the Lipschitz constant of 𝑧 ↦→ 𝑟 (𝑥, 𝑧).

Lemma 12.17 Suppose that 𝐴 = {𝑧 : 𝜆 ∥𝑧 − 𝜇∥Σ−1 ≤ 1} and 𝑥 ∈ R𝑑 . Then

lip𝐴(𝑟 (𝑥, ·)) ≤
1
𝛿
.

Exercise 12.18 ⋆ Prove Lemma 12.17.

Later we need some conservative upper bounds on the moments of the various
estimators. The easiest way to obtain these is to bound the moments of the
constituent parts and combine them using Hölder’s inequality. Remember in
what follows that 𝑋 has law N (𝜇, Σ).

Lemma 12.19 For any 𝑘 ≥ 1, E[𝑟 (𝑋, 𝑥)𝑘] ≤ 𝐶𝑘 exp
(
𝐶𝑘𝜆

2 ∥𝑥 − 𝜇∥2
Σ−1

)
.

Proof By Lemma 12.16 and Proposition A.3,

E[𝑟 (𝑋, 𝑥)𝑘] ≤ exp(𝑘)E
[
exp

(
𝜆𝑘

(1 − 𝜆)2 ⟨𝑋 − 𝜇, 𝑥 − 𝜇⟩Σ−1

)]
= exp(𝑘) exp

(
𝜆2𝑘2

2(1 − 𝜆)4 ∥𝑥 − 𝜇∥2
Σ−1

)
≤ 𝐶𝑘 exp

(
𝐶𝑘𝜆

2 ∥𝑥 − 𝜇∥2
Σ−1

)
. □

Lemma 12.20 Suppose that 𝜇 ∈ 𝐾 . Then, for any 𝑘 ≥ 1,

E[| 𝑓 (𝑋) |𝑘] ≤ 𝐶𝑘𝛿−2𝑘 E[|𝑌 |𝑘] ≤ 𝐶𝑘𝛿−2𝑘 .
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Proof Since 𝜇 ∈ 𝐾 , by Assumption 12.1, | 𝑓 (𝜇) | ≤ 1/𝛿,

E[| 𝑓 (𝑋) |𝑘] = E
[
| 𝑓 (𝑋) − 𝑓 (𝜇) + 𝑓 (𝜇) |𝑘

]
≤ 2𝑘−1𝛿−𝑘 + 2𝑘−1 lip( 𝑓 )𝑘E

[
∥𝑋 − 𝜇∥𝑘

]
≤ 2𝑘−1𝛿−𝑘 + 2𝑘−1 lip( 𝑓 )𝑘 ∥Σ∥

𝑘
2 E

[
∥𝑋 − 𝜇∥𝑘

Σ−1

]
≤ 𝐶𝑘𝛿−2𝑘 .

where we used the fact that (𝑎 + 𝑏)𝑘 ≤ 2𝑘−1 [𝑎𝑘 + 𝑏𝑘] and Proposition B.12
and Lemma B.4 to bound the moments of ∥𝑋 − 𝜇∥Σ−1 and Assumption 12.1. And
of course we made sure to choose 𝐶𝑘 as a suitably large 𝑘-dependent constant.
The second part follows from the first and using the fact that 𝑌 = 𝑓 (𝑋) + 𝜀 and
𝜀 is conditionally subgaussian (Assumption 12.1). □

12.8 Concentration continued

We now focus on the sequential aspects of concentration. Let 𝑓1, . . . , 𝑓𝑛 : R𝑑 →
R be a sequence of convex functions. Assume that 𝑋1, 𝑌1, . . . , 𝑋𝑛, 𝑌𝑛 are the
sequence of action/losses generated by an algorithm interacting with a convex
bandit, which is adapted as usual to the filtration (ℱ𝑡 )𝑛𝑡=1. Let 𝜏 be a stopping
time with respect to the filtration (ℱ𝑡 ). As usual, we let P𝑡 = P(·|ℱ𝑡 ) and E𝑡 be
the corresponding expectation operator. We let ∥·∥𝑡 ,𝜓𝑘 be the 𝑘th Orlicz norm
with respect to P𝑡 . The next assumption generalises Assumption 12.1 to the
sequential setting:

Assumption 12.21 The following hold almost surely for all 1 ≤ 𝑡 ≤ 𝜏:

(1) Convexity: 𝐾 is a convex body and 𝑓𝑡 is convex.
(2) Gaussian iterates: 𝑋𝑡 has law N (𝜇𝑡 , Σ𝑡 ) under P𝑡−1 and 𝜇𝑡 ∈ 𝐾 .
(3) Subgaussian responses: 𝑌𝑡 = 𝑓𝑡 (𝑋𝑡 ) + 𝜀𝑡 where

E𝑡−1 [𝜀𝑡 |𝑋𝑡 ] = 0 and E𝑡−1 [exp(𝜀2
𝑡 ) |𝑋𝑡 ] ≤ 2 .

(4) Boundedness: 𝜆 ≤ 1
𝑑+1 and

max
(
𝑛, 𝑑, lip( 𝑓𝑡 ), sup

𝑥∈𝐾
| 𝑓𝑡 (𝑥) |, 1/𝜆, ∥Σ𝑡 ∥, ∥Σ−1

𝑡 ∥
)
≤ 1
𝛿
.

As before, we let 𝐿 be a logarithmic factor:

𝐿 = 𝐶 log(1/𝛿) ,
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where 𝐶 > 0 is a universal constant. The surrogate function and its quadratic
approximation now change from round to round and are given by

𝑠𝑡 (𝑧) = E𝑡−1

[(
1 − 1

𝜆

)
𝑓𝑡 (𝑋𝑡 ) +

1
𝜆
𝑓𝑡 ((1 − 𝜆)𝑋𝑡 + 𝜆𝑧)

]
.

𝑞𝑡 (𝑧) =
〈
𝑠′𝑡 (𝜇𝑡 ), 𝑧 − 𝜇𝑡

〉
+ 1

4
∥𝑧 − 𝜇𝑡 ∥2

𝑠′′𝑡 (𝜇𝑡 )
.

Note that even when 𝑓𝑡 = 𝑓 is unchanging, the surrogate depends on 𝜇𝑡 and Σ𝑡

and may still change from round to round. Let 𝑝𝑡 be the density of N (𝜇𝑡 , Σ𝑡 )
and

𝑟𝑡 (𝑥, 𝑧) = min

(
exp(2),

𝑝𝑡
(
𝑥−𝜆𝑧
1−𝜆

)
(1 − 𝜆)𝑑 𝑝𝑡 (𝑥)

)
.

We abbreviate 𝑟𝑡 (𝑧) = 𝑟𝑡 (𝑋𝑡 , 𝑧). The estimator of 𝑠𝑡 and its gradients are

𝑠𝑡 (𝑧) =
(
1 − 1

𝜆
+ 𝑟𝑡 (𝑧)

𝜆

)
𝑌𝑡

𝑠′𝑡 (𝑧) =
𝑟𝑡 (𝑧)𝑌𝑡
1 − 𝜆 Σ−1

𝑡

(
𝑋𝑡 − 𝜆𝑧
1 − 𝜆 − 𝜇𝑡

)
𝑠′′𝑡 (𝑧) =

𝜆𝑟𝑡 (𝑧)𝑌𝑡
(1 − 𝜆)2

[
Σ−1
𝑡

(
𝑋𝑡 − 𝜆𝑧
1 − 𝜆 − 𝜇𝑡

) (
𝑋𝑡 − 𝜆𝑧
1 − 𝜆 − 𝜇𝑡

)⊤
Σ−1
𝑡 − Σ−1

𝑡

]
.

Throughout we let 𝑔𝑡 = 𝑠′𝑡 (𝜇𝑡 ) and 𝐻𝑡 = 1
2 𝑠

′′
𝑡 (𝜇𝑡 ) and 𝑔̄𝑡 = 𝑠′𝑡 (𝜇𝑡 ) and

𝐻̄𝑡 =
1
2 𝑠

′′
𝑡 (𝜇𝑡 ), which means an estimator of the quadratic surrogate is

𝑞𝑡 (𝑥) = ⟨𝑔𝑡 , 𝑥 − 𝜇𝑡 ⟩ +
1
2
(𝑥 − 𝜇𝑡 )⊤𝐻𝑡 (𝑥 − 𝜇𝑡 )

and the actual quadratic surrogate is

𝑞𝑡 (𝑥) = ⟨𝑔̄𝑡 , 𝑥 − 𝜇𝑡 ⟩ +
1
2
(𝑥 − 𝜇𝑡 )⊤𝐻̄𝑡 (𝑥 − 𝜇𝑡 ) .

Objectives and plan The questions in this section concern concentration of
quantities like

∑𝜏
𝑡=1 (𝑠𝑡 − 𝑠𝑡 ). This is an entire function, so we need to be precise

about what is meant by concentration. Typical results show that functions like
this are small at a specific 𝑥 or for all 𝑥 in some set. The magnitude of the errors
generally depends on some kind of cumulative predictable variation and our
bounds reflect that. The change of measure 𝑟𝑡 (𝑥) that appears in the definition
of the estimators is well-behaved when 𝑥 is close enough to 𝜇. Because of this
most of the concentration bounds that follow only hold on a subset of R𝑑 . An
illustrative experiment is given in Figure 12.3. Given 𝑟 > 0, let

𝐾𝜏 (𝑟) =
{
𝑥 ∈ R𝑑 : max

1≤𝑡≤𝜏
𝜆 ∥𝑥 − 𝜇𝑡 ∥Σ−1

𝑡
≤ 𝑟

}
,
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which is an intersection of ellipsoids and hence convex. The set 𝐾𝜏 (𝑟) is often
referred to as the focus region. The general flavour of the results is as follows:

◦ Given a deterministic 𝑥,
∑𝜏
𝑡=1 (𝑠𝑡 (𝑥) − 𝑠𝑡 ) is well-concentrated about zero

provided that 𝑥 ∈ 𝐾𝜏 (1/
√

2𝐿) almost surely.
◦ The function

∑𝜏
𝑡=1 (𝑠𝑡 (𝑥) − 𝑠𝑡 (𝑥)) is well-concentrated about zero for all

𝑥 ∈ 𝐾𝜏 (1/
√

2𝐿), with a slightly wider confidence interval than the case
above.

The predictable variation of the estimators is mostly caused by the variance
in the losses. Let 𝑉𝜏 =

∑𝜏
𝑡=1 E𝑡−1 [𝑌2

𝑡 ] and 𝑌max = max1≤𝑡≤𝜏 |𝑌𝑡 | + E𝑡−1 [|𝑌𝑡 |].
Generally speaking, in applications the losses (𝑌𝑡 ) will be bounded in𝑂 (1) with
high probability and in this case 𝑉𝜏 = 𝑂 (𝑛). Our concentration bounds will be
established using a martingale version of Bernstein’s inequality (Theorem B.19),
which is a variance-aware concentration inequality.

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0

2

4

6

8

10 f(x) = |x|
s(x)
1
n

∑n
t=1 ŝt(x)

Figure 12.3: The concentration of
∑𝑛
𝑡=1 𝑠𝑡 (𝑥)/𝑛 with 𝑓𝑡 = 𝑓 = | · | and 𝑛 = 105

and 𝜇 = 1/2 and Σ = 1 and 𝜆 = 1/2. The thin lines correspond to the first one
hundred estimated surrogates. The estimate is very close to the real surrogate
on an interval around 𝜇 but can be extremely poorly behaved far away, even
with 𝑛 so large. Note also that the estimated surrogate is convex near 𝜇 but not
everywhere.

Concentration bounds We start with a naive bound on 𝑉𝜏 and 𝑌max, which is
only used to bound these quantities when they appear in logarithmic terms.
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Proposition 12.22 With probability at least 1 − 𝛿/2,

max(𝑌max, 𝑉𝜏) ≤ poly(1/𝛿) .

Proof Combine Markov’s inequality, a union bound and Lemma 12.20. □

The first significant result is a Bernstein-like concentration bound for the sum
of the surrogate loss estimators:

Proposition 12.23 Under Assumption 12.21, the following hold:

(1) Let 𝑥 ∈ R𝑑 be a non-random vector such that 𝑥 ∈ 𝐾𝜏 (1/
√
𝐿) almost surely.

Then, with probability at least 1 − 𝛿,����� 𝜏∑︁
𝑡=1

(𝑠𝑡 (𝑥) − 𝑠𝑡 (𝑥))
����� ≤ 1 + 1

𝜆

[√︁
𝐿𝑉𝜏 + 𝐿𝑌max

]
.

(2) With probability at least 1 − 𝛿,

max
𝑥∈𝐾𝜏 (1/

√
2𝐿)

����� 𝜏∑︁
𝑡=1

(𝑠𝑡 (𝑥) − 𝑠𝑡 (𝑥))
����� ≤ 2 + 1

𝜆

√︁
𝑑𝐿𝑉𝜏 +

𝑑𝐿𝑌max
𝜆

.

You should view these bounds as a kind of Bernstein inequality with the term
involving 𝑌max the lower-order term and 𝑉𝜏 = 𝑂 (𝑛) with high probability.

Proof Starting with part (1), let 𝑥 ∈ R𝑑 be such that 𝑥 ∈ 𝐾𝜏 (1/
√
𝐿) almost

surely and recall that

𝑠𝑡 (𝑥) =
(
1 + 𝑟𝑡 (𝑥) − 1

𝜆

)
𝑌𝑡 .

Let Δ𝑡 = 𝑠𝑡 (𝑥) − E𝑡−1 [𝑠𝑡 (𝑥)]. A martingale version of Bernstein’s inequality
(Theorem B.19) applied to the sequence (Δ𝑡 )𝜏𝑡=1 says that with probability at
least 1 − 𝛿/2,����� 𝜏∑︁

𝑡=1
Δ𝑡

����� ≤ 3

√√√
𝑀 log

(
4 max(𝐵,

√
𝑀)

𝛿

)
+ 2𝐵 log

(
4 max(𝐵,

√
𝑀)

𝛿

)
, (12.9)

where 𝑀 =
∑𝜏
𝑡=1 E𝑡−1 [Δ2

𝑡 ] and 𝐵 = max(1,max1≤𝑡≤𝜏 |Δ𝑡 |). We now bound the
random variables 𝑀 and 𝐵. By definition,

𝑀 ≤
𝜏∑︁
𝑡=1

E𝑡−1 [𝑠𝑡 (𝑥)2] ≤ exp(4)
𝜆2

𝜏∑︁
𝑡=1

E𝑡−1 [𝑌2
𝑡 ] =

exp(4)
𝜆2 𝑉𝜏 ,
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where we used the fact that 𝑟𝑡 (𝑥) ≤ exp(2). Additionally,

𝐵 = max
(
1, max

1≤𝑡≤𝜏
|Δ𝑡 |

)
≤ 1 + max

1≤𝑡≤𝜏
|𝑠𝑡 (𝑥) − E𝑡−1 [𝑠𝑡 (𝑥)] |

≤ 1 + max
1≤𝑡≤𝜏

( |𝑠𝑡 (𝑥) | + |E𝑡−1 [𝑠𝑡 (𝑥)] |)

≤ 1 + exp(2)
𝜆

max
1≤𝑡≤𝜏

( |𝑌𝑡 | + E𝑡−1 [|𝑌𝑡 |])

= 1 + exp(2)𝑌max
𝜆

.

By Proposition 12.22, with probability at least 1 − 𝛿/2,

max(𝐵,
√
𝑀) ≤ poly(1/𝛿) .

Combining with (12.9) shows that with probability at least 1 − 𝛿,����� 𝜏∑︁
𝑡=1

Δ𝑡

����� ≤ 1
𝜆

[√︁
𝑉𝜏𝐿 + 𝐿𝑌max

]
.

Note that so far we did not use the fact that 𝑥 ∈ 𝐾𝜏 (1/
√
𝐿). The argument above

shows that
∑𝜏
𝑡=1 (𝑠𝑡 (𝑥) − E𝑡−1 [𝑠𝑡 (𝑥)]) concentrates well for any 𝑥 ∈ R𝑑 . All

that remains is to argue that E𝑡−1 [𝑠𝑡 (𝑥)] is close to 𝑠𝑡 (𝑥). Since 𝑥 ∈ 𝐾𝜏 (1/
√
𝐿),

by Proposition 12.14,����� 𝜏∑︁
𝑡=1

(𝑠𝑡 (𝑥) − 𝑠𝑡 (𝑥))
����� ≤ 𝑛𝛿 +

����� 𝜏∑︁
𝑡=1

(𝑠𝑡 (𝑥) − E𝑡−1 [𝑠𝑡 (𝑥)])
�����

≤ 1 +
����� 𝜏∑︁
𝑡=1

Δ𝑡

�����
≤ 1 + 1

𝜆

[√︁
𝑉𝜏𝐿 + 𝐿𝑌max

]
.

This completes the proof of Part (1). Moving now to part (2). Abbreviate
𝐾𝜏 = 𝐾𝜏 (1/

√
2𝐿). By Assumption 12.21, Σ ⪯ 1

𝛿
1 and 𝜆 ≥ 𝛿 and by the

definition of 𝐾𝜏 ,

𝐾𝜏 ⊂
{
𝑥 : 𝜆 ∥𝑥 − 𝜇1∥Σ−1

1
≤ 1/

√
2𝐿

}
⊂

{
𝑥 : ∥𝑥 − 𝜇1∥ ≤ 𝛿−3/2} ≜ 𝐽 . (12.10)

The argument follows along the same lines as part (1) but now we need an
additional covering and Lipschitz argument. Let C be a finite cover of 𝐽 such
that for all 𝑦 ∈ 𝐽 there exists an 𝑥 ∈ C such that ∥𝑥 − 𝑦∥ ≤ 𝜀 with

𝜀 = poly(𝛿) . (12.11)
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Vershynin (2018, Corollary 4.2.13) shows that C can be chosen so that

|C | ≤
(

2 diam(𝐽)
𝜀

+ 1
)𝑑
.

By (12.10), diam(𝐽) ≤ 2𝛿−3/2. Hence, by the definition of 𝐿 = 𝐶 log(1/𝛿)
for suitably large universal constant 𝐶, it follows that log |C | ≤ 𝑑𝐿. Repeating
the argument in Part (1) along with a union bound over C shows that with
probability at least 1 − 𝛿 the following both hold:

(i) max𝑥∈C

��∑𝜏
𝑡=1 (𝑠𝑡 (𝑥) − E𝑡−1 [𝑠𝑡 (𝑥)])

�� ≤ 1
𝜆

[√
𝑑𝑉𝜏𝐿 + 𝑑𝐿𝑌max

]
.

(ii) max(𝑌max, 𝑉𝜏) ≤ poly(1/𝛿).

For the remainder we assume these events occur. Let 𝑦 ∈ 𝐾𝜏 . By the construction
of C there exists an 𝑥 ∈ C such that ∥𝑥 − 𝑦∥ ≤ 𝜀. Since 𝑦 ∈ 𝐾𝜏 for any 𝑡 ≤ 𝜏,

𝜆 ∥𝑥 − 𝜇𝑡 ∥Σ−1
𝑡

≤ 𝜆 ∥𝑥 − 𝑦∥Σ−1
𝑡

+ 𝜆 ∥𝑦 − 𝜇𝑡 ∥Σ−1
𝑡

≤ 𝜆𝜀
√
𝛿
+ 1
√

2𝐿
≤ 1

√
𝐿
,

where we used the definition of 𝐾𝜏 , the triangle inequality and the definition of
𝜀 in (12.11) and naive bounding. Therefore 𝑥 ∈ 𝐾𝜏 (1/

√
𝐿) and for any 𝑡 ≤ 𝜏,

|𝑠𝑡 (𝑥) − 𝑠𝑡 (𝑦) | =
|𝑟𝑡 (𝑥) − 𝑟𝑡 (𝑦) | |𝑌𝑡 |

𝜆
≤ |𝑌𝑡 |
𝜆𝛿

∥𝑥 − 𝑦∥ ≤ 𝜀𝑌max
𝜆𝛿

≤ 1
2𝑛
.

where we used Lemma 12.17 and the assumption that ∥𝑥 − 𝑦∥ ≤ 𝜀. By
Lemma 12.3(3),

lip(𝑠𝑡 ) ≤ lip( 𝑓𝑡 ) ≤
1
𝛿
.

Hence |𝑠𝑡 (𝑥) − 𝑠𝑡 (𝑦) | ≤ 𝜀
𝛿
≤ 1

2𝑛 . Therefore����� 𝜏∑︁
𝑡=1

(𝑠𝑡 (𝑦) − 𝑠𝑡 (𝑦))
����� ≤ 1 +

����� 𝜏∑︁
𝑡=1

(𝑠𝑡 (𝑥) − 𝑠𝑡 (𝑥))
�����

≤ 2 +
����� 𝜏∑︁
𝑡=1

(𝑠𝑡 (𝑥) − E𝑡−1 [𝑠𝑡 (𝑥)])
����� by Proposition 12.14

≤ 2 + 1
𝜆

[√︁
𝑑𝑉𝜏𝐿 + 𝑑𝐿𝑌max

]
,

which completes the proof. □

More or less the same result holds for the quadratic surrogates estimates.

Proposition 12.24 Under Assumption 12.21, the following hold:
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(1) Let 𝑥 ∈ R𝑑 be a non-random vector such that 𝑥 ∈ 𝐾𝜏 (1/
√
𝐿) almost surely.

Then, with probability at least 1 − 𝛿,����� 𝜏∑︁
𝑡=1

(𝑞𝑡 (𝑥) − 𝑞𝑡 (𝑥))
����� ≤ 1 + 1

𝜆

[√︁
𝑉𝜏𝐿 + 𝑌max𝐿

]
.

(2) With probability at least 1 − 𝛿,

max
𝑥∈𝐾𝜏 (1/

√
2𝐿)

����� 𝜏∑︁
𝑡=1

(𝑞𝑡 (𝑥) − 𝑞𝑡 (𝑥))
����� ≤ 1 + 1

𝜆

[√︁
𝑑𝑉𝜏𝐿 + 𝑑𝑌max𝐿

]
.

Proof Let 𝑥 ∈ R𝑑 be a non-random vector such that 𝑥 ∈ 𝐾𝜏 (1/
√
𝐿) almost

surely andΔ𝑡 = 𝑞𝑡 (𝑥)−𝑞𝑡 (𝑥), which satisfiesE𝑡−1 [Δ𝑡 ] = 0 by Proposition 12.14
and the definition of 𝑞𝑡 . By Theorem B.19, with probability at least 1 − 𝛿/4,����� 𝜏∑︁
𝑡=1

Δ𝑡

����� ≤ 3

√√√
𝑀 log

(
8 max(𝐵,

√
𝑀)

𝛿

)
+ 2𝐵 log

(
8 max(𝐵,

√
𝑀)

𝛿

)
, (12.12)

where 𝑀 =
∑𝜏
𝑡=1 E𝑡−1 [Δ2

𝑡 ] and 𝐵 = max1≤𝑡≤𝜏 |Δ𝑡 |. Moreover, by Proposi-
tion 12.22, with probability at least 1 − 𝛿/2,

max(𝑌max, 𝑉𝜏) ≤ poly(1/𝛿) . (12.13)

Since E𝑡−1 [𝑞𝑡 (𝑥)] = 𝑞𝑡 (𝑥) we have

E𝑡−1 [Δ2
𝑡 ] ≤ E𝑡−1 [𝑞𝑡 (𝑥)2] and |Δ𝑡 | ≤ |𝑞𝑡 (𝑥) | + E𝑡−1 [|𝑞𝑡 (𝑥) |] .

Let𝑈𝑡 = ⟨𝑥 − 𝜇𝑡 , 𝑋𝑡 − 𝜇𝑡 ⟩Σ−1
𝑡

. Substituting the definitions of 𝑔𝑡 and 𝐻𝑡 yields

𝑞𝑡 (𝑥) = ⟨𝑔𝑡 , 𝑥 − 𝜇𝑡 ⟩ +
1
2
(𝑥 − 𝜇𝑡 )⊤𝐻𝑡 (𝑥 − 𝜇𝑡 )

= 𝑟𝑡 (𝜇𝑡 )𝑌𝑡

𝑈𝑡

1 − 𝜆 +
𝜆𝑈2

𝑡

4(1 − 𝜆)4 −
𝜆 ∥𝑥 − 𝜇𝑡 ∥2

Σ−1
𝑡

4(1 − 𝜆)2

 .
Using the fact from Lemma 12.16 that 𝑟𝑡 (𝜇𝑡 ) ∈ [0, exp(1)] and 𝜆 ≤ 1/2 and
the condition that 𝑥 ∈ 𝐾𝜏 (1/

√
𝐿) it follows that

|𝑞𝑡 (𝑥) | ≤ |𝑌𝑡 | exp(1)
[
2|𝑈𝑡 | + 4𝜆 |𝑈𝑡 |2 +

1
𝜆𝐿

]
. (12.14)

The law of𝑈𝑡 under P𝑡−1 is N (0, ∥𝑥 − 𝜇𝑡 ∥Σ−1
𝑡
).

Exercise 12.25 ⋆ Complete the following steps:

(i) Show that ∥𝑈2
𝑡 ∥𝑡−1,𝜓1 ≤ 8

3𝐿𝜆2 .
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(ii) Use (12.14), part (i), Assumption 12.21 and Lemma B.8 to show that

E𝑡−1 [𝑞𝑡 (𝑥)2] ≤ 𝛿 +
𝐶E𝑡−1 [𝑌2

𝑡 ]
𝜆2 E𝑡−1 [|𝑞𝑡 (𝑥) |] ≤ 𝛿 +

𝐶E𝑡−1 [|𝑌𝑡 |]
𝜆

.

(iii) Use Lemma B.3 to show that with probability at least 1 − 𝛿/4

|𝑞𝑡 (𝑥) | ≤
𝐶 |𝑌𝑡 |
𝜆

for all 1 ≤ 𝑡 ≤ 𝜏 . (12.15)

By a union bound, with probability at least 1 − 𝛿 the high probability events
in (12.12), (12.13) and (12.15) all hold. For the remainder assume these events
hold. Your solution to Exercise 12.25 shows that

𝑀 =

𝜏∑︁
𝑡=1

E𝑡−1 [Δ2
𝑡 ] ≤ 𝑛𝛿 +

𝐶𝑉𝜏

𝜆2 .

Moreover,

𝐵 = max
1≤𝑡≤𝜏

|Δ𝑡 | ≤ max
1≤𝑡≤𝜏

(|𝑞𝑡 (𝑥) | + E𝑡−1 [|𝑞𝑡 (𝑥) |]) ≤ 𝛿 +
𝐶𝑌max
𝜆

.

Combining these with (12.12) shows that����� 𝜏∑︁
𝑡=1

(𝑞𝑡 (𝑥) − 𝑞𝑡 (𝑥))
����� ≤ 1 + 1

𝜆

[√︁
𝑉𝜏𝐿 + 𝐿𝑌max

]
.

Part (2) follows by repeating more-or-less the same argument the covering
argument in Proposition 12.23. □

Exercise 12.26 ⋆ Prove Proposition 12.24(2).

The next proposition shows that the accumulation of second derivatives along
the sequence 𝜇1, . . . , 𝜇𝜏 is well-concentrated.

Proposition 12.27 Let𝒮 ⊂ S𝑑+ be the (random) set of positive definite matrices
such that Σ−1

𝑡 ⪯ Σ−1 for all 𝑡 ≤ 𝜏 and 𝑆𝜏 =
∑𝜏
𝑡=1 𝑠

′′
𝑡 (𝜇𝑡 ) and 𝑆𝜏 =

∑𝜏
𝑡=1 𝑠

′′
𝑡 (𝜇𝑡 ).

With probability at least 1 − 𝛿, for all Σ−1 ∈ 𝒮,

−𝜆𝐿2
[
1 +

√︁
𝑑𝑉𝜏 + 𝑑2𝑌max

]
Σ−1 ⪯ 𝑆𝜏 − 𝑆𝜏 ⪯ 𝜆𝐿2

[
1 +

√︁
𝑑𝑉𝜏 + 𝑑2𝑌max

]
Σ−1 .

Proof By definition of the Löwner order, the claim is equivalent to showing
that with probability at least 1 − 𝛿 for all 𝑢 ∈ S𝑑−1

1 and Σ ∈ 𝒮 that��𝑢⊤ (𝑆𝜏 − 𝑆𝜏)𝑢�� ≤ 𝜆𝐿2
[
1 +

√︁
𝑑𝑉𝜏 + 𝑑2𝑌max

]
∥𝑢∥2

Σ−1 . (12.16)

The approach followed will be the usual one:

◦ Prove that (12.16) holds for all 𝑢 in a finite cover of S𝑑−1
1 with slightly

smaller constants.
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◦ Extend to all 𝑢 ∈ S𝑑−1
1 by a Lipschitz argument.

Let CS be a cover of S𝑑−1
1 such that for all 𝑢 ∈ S𝑑−1

1 there exists a 𝑣 ∈ CS

such that ∥𝑢 − 𝑣∥ ≤ 𝜀 where 𝜀 = poly(𝛿) is a small constant. Vershynin (2018,
Corollary 4.2.13) shows that CS can be chosen so that

log |CS | ≤ 𝑑 log
(

2
𝜀
+ 1

)
≤ 𝑑𝐿 .

Let𝑊𝑡 = Σ
−1/2
𝑡 (𝑋𝑡−𝜇𝑡 ), which is a standard Gaussian under P𝑡−1. By definition,

𝑠′′𝑡 (𝜇𝑡 ) =
𝜆𝑟𝑡 (𝜇𝑡 )𝑌𝑡
(1 − 𝜆)2

[
Σ−1
𝑡 (𝑋𝑡 − 𝜇𝑡 ) (𝑋𝑡 − 𝜇𝑡 )⊤Σ−1

𝑡

(1 − 𝜆)2 − Σ−1
𝑡

]
=
𝜆𝑟𝑡 (𝜇𝑡 )𝑌𝑡
(1 − 𝜆)2

[
Σ
−1/2
𝑡 𝑊𝑡𝑊

⊤
𝑡 Σ

−1/2
𝑡

(1 − 𝜆)2 − Σ−1
𝑡

]
.

Let 𝑢 ∈ CS and define

𝑄𝑡 ,𝑢 =
𝜆𝑟𝑡 (𝜇𝑡 )
(1 − 𝜆)2

[
⟨Σ−1/2
𝑡 𝑢,𝑊𝑡 ⟩2

(1 − 𝜆)2 − ∥𝑢∥2
Σ−1
𝑡

]
,

which is chosen so that 𝑢⊤𝑠′′𝑡 (𝜇𝑡 )𝑢 = 𝑌𝑡𝑄𝑡 ,𝑢. By Proposition 12.14
E𝑡−1 [𝑠′′𝑡 (𝜇𝑡 )] = 𝑠′′𝑡 (𝜇𝑡 ). Hence

Δ𝑡 ,𝑢 = 𝑌𝑡𝑄𝑡 ,𝑢 − E𝑡−1 [𝑌𝑡𝑄𝑡 ,𝑢] = 𝑢⊤𝑠′′𝑡 (𝜇𝑡 )𝑢 − 𝑢⊤𝑠′′𝑡 (𝜇𝑡 )𝑢 .

By Lemma 12.16, 𝑟𝑡 (𝜇𝑡 ) ≤ exp(1) and hence by (B.1) and Propositions B.11
and B.12 and naively simplifying constants,

∥𝑄𝑡 ,𝑢∥𝑡−1,𝜓1 ≤ 150𝜆 ∥𝑢∥2
Σ−1
𝑡

. (12.17)

Therefore, since the variance of a random variable is upper bounded by its
second moment and by Lemma B.8 with 𝑘 = 2,

E𝑡−1 [Δ2
𝑡 ,𝑢] ≤ E𝑡−1 [𝑌2

𝑡 𝑄
2
𝑡 ,𝑢]

≤ 𝜆2
(
𝛿 + 𝐿2E𝑡−1 [𝑌2

𝑡 ]
)
∥𝑢∥4

Σ−1
𝑡

≤ poly(1/𝛿)
(
1 + E𝑡−1 [𝑌2

𝑡 ]
)
,

where the final inequality crudely uses the fact that 𝑢 ∈ S𝑑−1
1 and assumption

that ∥Σ−1
𝑡 ∥ ≤ 1/𝛿. A union bound combined with (12.17) and Lemma B.3 and

Lemma B.8 with 𝑘 = 1 shows that with probability at least 1− 𝛿/4 for all 𝑢 ∈ CS

and 1 ≤ 𝑡 ≤ 𝜏,��Δ𝑡 ,𝑢�� ≤ 𝜆𝑑 (𝑌max + 𝛿)𝐿 ∥𝑢∥2
Σ−1
𝑡

≤ poly(1/𝛿) (1 + 𝑌max) .
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By Proposition 12.22, with probability at least 1 − 𝛿/2, max(𝑌max, 𝑉𝜏) ≤
poly(1/𝛿). Combining these high probability bounds and another union bound
over CS with Theorem B.19 shows that with probability at least 1 − 𝛿 for all
𝑢 ∈ CS and any Σ ∈ 𝒮,����� 𝜏∑︁

𝑡=1
Δ𝑡 ,𝑢

����� ≤
√√
𝑑𝐿

𝜏∑︁
𝑡=1

E𝑡−1 [Δ2
𝑡 ,𝑢] + 𝑑𝐿 max

1≤𝑡≤𝜏
|Δ𝑡 ,𝑢 |

≤ 𝜆 ∥𝑢∥2
Σ−1 𝐿

2
1 +

√√
𝑑

𝜏∑︁
𝑡=1

E𝑡−1 [𝑌2
𝑡 ] + 𝑑2𝑌max

 ,
where we used the assumption that Σ−1

𝑡 ⪯ Σ−1 for all 𝑡 ≤ 𝜏. The claim is finished
by a Lipschitz argument:

Exercise 12.28 ⋆ Complete the proof by showing that with high probability
𝑢 ↦→ Δ𝑡 ,𝑢 is suitably Lipschitz and using the properties of the cover C .

□

Remark 12.29 Suppose that (𝑎𝑡 )𝑛𝑡=1 is a sequence such that 𝑎𝑡 ∈ [0, 𝐶] almost
surely and 𝑎𝑡 is ℱ𝑡−1-measurable for all 𝑡. Redefine

𝑆𝜏 =

𝜏∑︁
𝑡=1

𝑎𝑡 𝑠
′′
𝑡 (𝜇𝑡 ) and 𝑆𝜏 =

𝜏∑︁
𝑡=1

𝑎𝑡 𝑠
′′
𝑡 (𝜇𝑡 ) .

Then Proposition 12.27 continues to hold with the essentially the same proof.

Finally, the gradient estimates of the surrogate loss also concentrate.

Proposition 12.30 Let𝒮 ⊂ S𝑑+ be the (random) set of positive definite matrices
such that Σ−1

𝑡 ⪯ Σ−1 for all 𝑡 ≤ 𝜏. The following hold:

(1) Suppose that 𝑥 ∈ 𝐾𝜏 (1/
√

2𝐿) almost surely. Then, for any 𝑢 ∈ R𝑑 , with
probability at least 1 − 𝛿, for any Σ ∈ 𝒮,����� 𝜏∑︁

𝑡=1

〈
𝑠′𝑡 (𝑥) − 𝑠′𝑡 (𝑥), 𝑢

〉����� ≤ ∥𝑢∥Σ−1 𝐿

[
1 +

√︁
𝑉𝜏 + 𝑌max

]
.

(2) With probability at least 1 − 𝛿 for all 𝑥 ∈ 𝐾𝜏 (1/
√

2𝐿) and 𝑢 ∈ R𝑑 and
Σ ∈ 𝒮, ����� 𝜏∑︁

𝑡=1

〈
𝑠′𝑡 (𝑥) − 𝑠′𝑡 (𝑥), 𝑢

〉����� ≤ ∥𝑢∥Σ−1 𝐿

[
1 +

√︁
𝑑𝑉𝜏 + 𝑑2𝑌max

]
.
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Proof Let 𝑢 ∈ R𝑑 and 𝑥 be such that 𝑥 ∈ 𝐾𝜏 (1/
√

2𝐿) almost surely. By
definition,

⟨𝑠𝑡 (𝑥), 𝑢⟩ =
𝑟𝑡 (𝑥)𝑌𝑡
1 − 𝜆

〈
𝑢, Σ−1

𝑡

(
𝑋𝑡 − 𝜆𝑥
1 − 𝜆 − 𝜇𝑡

)〉
Let Δ𝑡 = ⟨𝑠𝑡 (𝑥), 𝑢⟩ − E𝑡−1 [⟨𝑠𝑡 (𝑥), 𝑢⟩]. As usual, we need to bound E𝑡−1 [Δ2

𝑡 ]
and max1≤𝑡≤𝜏 |Δ𝑡 |. Let

𝑄𝑡 =
𝑟𝑡 (𝑥)
1 − 𝜆

〈
𝑢, Σ−1

𝑡

(
𝑋𝑡 − 𝜆𝑥
1 − 𝜆 − 𝜇𝑡

)〉
,

which is chosen so that Δ𝑡 = 𝑌𝑡𝑄𝑡 . By definition 𝑟𝑡 (𝑥) ≤ exp(2) and therefore

∥𝑄𝑡 ∥𝑡−1,𝜓2 ≤ 𝐶 ∥𝑢∥Σ−1

[
1 + 𝜆 ∥𝑥 − 𝜇𝑡 ∥Σ−1

𝑡

]
≤ 2𝐶 ∥𝑢∥Σ−1

𝑡
.

Hence, by Lemma B.8,

E𝑡−1 [Δ2
𝑡 ] ≤ ∥𝑢∥2

Σ−1
𝑡

(
𝛿 + E𝑡−1 [𝑌2

𝑡 ]
)
𝐿 .

Also by Lemma B.8 in combination with Lemma B.3 and a union bound, with
probability at least 1 − 𝛿/2, for all 𝑡 ≤ 𝜏

|Δ𝑡 | ≤ ∥𝑢∥Σ−1
𝑡

(𝛿 + 𝑌max)
√
𝐿

Part (1) now follows from Theorem B.19. For part (2), combine the above
with the covering argument in Proposition 12.23, covering both 𝐾1 (1/

√
2𝐿) and

S𝑑−1
1 . □

Exercise 12.31 ⋆ Prove Proposition 12.30(2).

12.9 Summary

Let us summarise what has been shown. The surrogate loss function is convex
(Lemma 12.3(1)) and optimistic:

𝑠(𝑥) ≤ 𝑓 (𝑥) for all 𝑥 ∈ R𝑑 . Lemma 12.3(2)

On the other hand, the surrogate evaluated at 𝜇 is relatively close to 𝑓 (𝜇):

E[ 𝑓 (𝑋)] ≤ 𝑠(𝜇) + 2
𝜆

tr(𝑠′′ (𝜇)Σ) + 2𝛿𝑑
𝜆

. Proposition 12.10

Furthermore, the quadratic surrogate offers the same benefits on the focus region.
Specifically, Corollary 12.11 shows that for any 𝑥 such that 𝜆 ∥𝑥 − 𝜇∥Σ−1 ≤ 1

𝐿
,

E[ 𝑓 (𝑋)] − 𝑓 (𝑥) ≤ 𝑞(𝜇) − 𝑞(𝑥) + 2
𝜆

tr(𝑠′′ (𝜇)Σ) + 𝛿
[
2𝑑
𝜆

+ 1
𝜆2

]
.
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The effectiveness of the quadratic surrogate arises from the fact that 𝑠 is
nearly quadratic on the focus region. Proposition 12.5 shows that provided
𝜆 ∥𝑥 − 𝑦∥Σ−1 ≤ 𝐿−1/2, then 𝑠′′ (𝑥) ⪯ 2𝑠′′ (𝑦) + 𝛿Σ−1.

Sequential concentration Recall the notation of the sequential setting explained
in Section 12.8. Particularly, that

𝐾𝜏 (𝑟) =
{
𝑥 ∈ 𝐾 : max

𝑡≤𝜏
𝜆 ∥𝑥 − 𝜇𝑡 ∥Σ−1

𝑡
≤ 𝑟

}
.

Remember also that 𝑉𝜏 =
∑𝜏
𝑡=1 E𝑡−1 [𝑌2

𝑡 ] and 𝑌max = max1≤𝑡≤𝜏 ( |𝑌𝑡 | +
E𝑡−1 [|𝑌𝑡 |]). The following results hold under Assumption 12.21. The surrogate
is well-concentrated in the sense that by Proposition 12.23,

(1) For 𝑥 ∈ R𝑑 such that 𝑥 ∈ 𝐾𝜏 (1/
√
𝐿) almost surely, with probability at

least 1 − 𝛿, ����� 𝜏∑︁
𝑡=1

(𝑠𝑡 (𝑥) − 𝑠𝑡 (𝑥))
����� ≥ 1 + 1

𝜆

[√︁
𝐿𝑉𝜏 + 𝐿𝑌max

]
.

(2) With probability at least 1 − 𝛿,

sup
𝑥∈𝐾𝜏 (1/

√
2𝐿)

����� 𝜏∑︁
𝑡=1

(𝑠𝑡 (𝑥) − 𝑠𝑡 (𝑥))
����� ≤ 1 + 1

𝜆

[√︁
𝑑𝐿𝑉𝜏 + 𝑑𝐿𝑌max

]
.

Similar results hold for the quadratic surrogate. Precisely, by Proposition 12.24,

(1) Given any 𝑥 ∈ R𝑑 such that 𝑥 ∈ 𝐾𝜏 (1/
√

2𝐿) almost surely, with probability
at least 1 − 𝛿, ����� 𝜏∑︁

𝑡=1
𝑞𝑡 (𝑥) − 𝑞𝑡 (𝑥)

����� ≤ 1 + 1
𝜆

[√︁
𝑉𝜏𝐿 + 𝑌max𝐿

]
.

(2) With probability at least 1 − 𝛿,

sup
𝑥∈𝐾𝜏 (1/

√
2𝐿)

����� 𝜏∑︁
𝑡=1

𝑞𝑡 (𝑥) − 𝑞𝑡 (𝑥)
����� ≤ 1 + 1

𝜆

[√︁
𝑑𝑉𝜏𝐿 + 𝑑𝑌max𝐿

]
.

The Hessian estimates are also reasonably well-behaved. Recall that 𝒮 is the
random set of matrices Σ−1 such that Σ−1

𝑡 ⪯ Σ−1 for all 𝑡 ≤ 𝜏. Then, with
probability at least 1 − 𝛿, for all Σ ∈ 𝒮,

−𝜆𝐿2
[
1 +

√︁
𝑑𝑉𝜏 + 𝑑2𝑌max

]
Σ−1 ⪯ 𝑆𝜏 − 𝑆𝜏 ⪯ 𝜆𝐿2

[
1 +

√︁
𝑑𝑉𝜏 + 𝑑2𝑌max

]
Σ−1 ,

where 𝑆𝜏 =
∑𝜏
𝑡=1 𝑠

′′
𝑡 (𝜇𝑡 ) and 𝑆𝜏 =

∑𝜏
𝑡=1 𝑠

′′
𝑡 (𝜇𝑡 ). Lastly, the gradient estimates

concentrate. Let 𝒮 be as above. The following hold:
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(1) For 𝑥 ∈ R𝑑 with 𝑥 ∈ 𝐾𝜏 (1/
√

2𝐿) almost surely and 𝑢 ∈ R𝑑 , with
probability at least 1 − 𝛿, for any Σ ∈ 𝒮,����� 𝜏∑︁

𝑡=1

〈
𝑠′𝑡 (𝑥) − 𝑠′𝑡 (𝑥), 𝑢

〉����� ≤ ∥𝑢∥Σ−1 𝐿

[
1 +

√︁
𝑉𝜏 + 𝑌max

]
.

(2) With probability at least 1 − 𝛿 for all 𝑥 ∈ 𝐾𝜏 (1/
√

2𝐿) and all 𝑢 ∈ R𝑑 and
any Σ ∈ 𝒮,����� 𝜏∑︁

𝑡=1

〈
𝑠′𝑡 (𝑥) − 𝑠′𝑡 (𝑥), 𝑢

〉����� ≤ ∥𝑢∥Σ−1 𝐿

[
1 +

√︁
𝑑𝑉𝜏 + 𝑑2𝑌max

]
.

12.10 Notes

12.i: The optimistic surrogate was introduced in a slightly different form by
Bubeck et al. (2017) and in the present form by Lattimore and György (2021a).
The quadratic approximation was first used by Lattimore and György (2023),
who proved most of the results in this chapter or variants there-of.

12.ii: The parameter 𝜆 determines the amount of smoothing. The change of
measure in (12.8) blows up as 𝜆 ≥ 1/𝑑. Meanwhile, for 𝜆 ∈ (0, 1/𝑑) there are
trade-offs.
◦ A large value of𝜆 increases the power of the lower bound of Proposition 12.10

showing that 𝑠 is not too far below 𝑓 .
◦ A large value of 𝜆 decreases the focus region on which the quadratic surrogate

is close to the non-quadratic surrogate and where the concentration properties
of the estimators are well-behaved.



13
Submodular minimisation

Let [𝑑] = {1, . . . , 𝑑} for some integer 𝑑 and 𝒫 its powerset. A function
𝑓 : 𝒫 → [0, 1] is submodular if for all 𝑋 ⊂ 𝑌 ⊂ [𝑑] and 𝑥 ∈ [𝑑] \ 𝑌 ,

𝑓 (𝑋 ∪ {𝑥}) − 𝑓 (𝑋) ≥ 𝑓 (𝑌 ∪ {𝑥}) − 𝑓 (𝑌 ) .

Submodular functions are sometimes viewed as a combinatorial analogue of
convexity via a gadget called the Lovász extension that we explain momentarily.
In bandit submodular minimisation the adversary secretly chooses a sequence
( 𝑓𝑡 )𝑛𝑡=1 : 𝒫 → [0, 1] of submodular functions. Then, in each round 𝑡, the
learner chooses a set 𝑋𝑡 ∈ 𝒫 and observes 𝑌𝑡 = 𝑓𝑡 (𝑋𝑡 ) + 𝜀𝑡 . The optimal set is

𝑋★ = arg min
𝑋∈𝒫

𝑛∑︁
𝑡=1

𝑓𝑡 (𝑋)

and the regret definition is unchanged. As usual, one can consider the stochastic
version of the problem, where 𝑓𝑡 = 𝑓 for some unknown 𝑓 and all 𝑡. The
raison d’etre of this chapter is to explain how convex bandit algorithms can
be used for bandit submodular minimisation. In particular, 𝑂̃ (𝑑1.5√𝑛) regret
is possible in the stochastic setting by combining Algorithm 10.2 with the
Lovász extension. And in the adversarial setting Algorithm 11.3 yields a regret
bound of 𝑂̃ (𝑑2.5√𝑛). Besides this we explain how the special structure of bandit
submodular minimisation means that the algorithm in Chapter 5 can be improved
to have regret 𝑂 (𝑑𝑛2/3) and 𝑂 (𝑑3/𝜀2) sample complexity.

Remark 13.1 The classical optimisation problem of finding the minimum of
a submodular function 𝑓 : 𝒫 → [0, 1] is quite interesting and we give some
pointers in Note 13.v.

Many problems in economics and operations research have some kind of
submodularity based on the principles of diminishing returns or economies of
scale. Consider the following toy example. A specialty chocolate manufacturer
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is considering offering a subset of [𝑑] items on their website. The expected
earnings when offering item 𝑘 is some unknown 𝑝(𝑘) and for 𝑋 ⊂ [𝑑] let 𝑐(𝑋)
be the cost of offering subset 𝑋 . The expected loss (costs minus earnings) when
offering 𝑋 is

𝑓 (𝑋) = 𝑐(𝑋) −
∑︁
𝑘∈𝑋

𝑝(𝑘) .

Thanks to economies of scale one might expect that when 𝑘 ∉ 𝑌 ⊃ 𝑋 the cost
of adding 𝑘 to 𝑌 may be less than adding it to 𝑋:

𝑐(𝑋 ∪ {𝑘}) − 𝑐(𝑋) ≥ 𝑐(𝑌 ∪ {𝑘}) − 𝑐(𝑌 ) ,

which implies that 𝑓 is submodular. You can find many applications of submod-
ular function minimisation in the survey by McCormick (2005).

13.1 Lovász extension

Let 𝑓 : 𝒫 → [0, 1] be a submodular function. We can and will identify
𝒫 with {0, 1}𝑑 in terms of the indicator function so that (1, 1, . . . , 1) ≡ [𝑑]
and (0, 0, . . . , 0) ≡ ∅ and (1, 0, 1, 0, 0, . . . , 0) = {1, 3} and so on. The Lovász
extension is a function 𝑔 : [0, 1]𝑑 → [0, 1] defined by

𝑔(𝑥) =
∫ 1

0
𝑓 ({𝑖 : 𝑥𝑖 ≥ 𝑢}) d𝑢 . (13.1)

An illustration of the Lovász extension is shown in Figure 13.1 and its integral
representation above is shown in Figure 13.2. There are many ways to represent
the Lovász extension. A simple one is given in the following exercise:

Exercise 13.2 ⋆ Suppose that 𝑈 is uniformly distributed on [0, 1] and
𝑆 = {𝑖 : 𝑥𝑖 ≥ 𝑈}. Show that E[ 𝑓 (𝑆)] = 𝑔(𝑥).

You should be able to see that if 𝑥 ∈ {0, 1}𝑑 , then 𝑔(𝑥) = 𝑓 (𝑥), where we
have abused notation by using the identification between {0, 1}𝑑 and 𝒫. The
following classical theorem is what makes this chapter possible:

Theorem 13.3 Let 𝑔 be the Lovász extension of 𝑓 . The following hold:

(1) 𝑔 is convex; and
(2) 𝑔 is piecewise linear; and
(3) 𝑔 is minimised on a vertex of the hypercube.
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{1, 2}

𝑓 ({1, 2}) = 1

𝑓 ({1}) = 0.7

𝑓 ({2}) = 0.9

𝑓 (∅) = 0
∅

{1}
{2}

Figure 13.1: The Lovász extension for submodular function: 𝑓 (∅) =

0, 𝑓 ({1}) = 0.7, 𝑓 ({2}) = 0.9, 𝑓 ({1, 2}) = 1. The Lovász extension is
piecewise linear with each piece corresponding to a permutation 𝜎 of [𝑑].
The piece associated with permutation 𝜎 is the simplex spanned by the sets
∅, {𝜎(1)}, {𝜎(1), 𝜎(2)}, · · · , {𝜎(1), · · · , 𝜎(𝑑)} where a set is associated with
a corner of the binary hypercube by its indicator function. In the figure 𝑑 = 2 so
there are only 𝑑! = 2 pieces.

0 0.3 0.52 0.7 0.8 1

𝑓 ({1, 2, 3, 4})

𝑓 ({1, 3, 4})

𝑓 ({3, 4})
𝑓 ({4})

𝑓 (∅)

Figure 13.2: An example of the integral computation in (13.1) with 𝑑 = 4 and
unspecified 𝑓 and 𝑥 = [0.52, 0.3, 0.7, 0.8] so that 𝑔(𝑥) is the area in grey.

Proof A sequence 𝑆1, . . . , 𝑆𝑚 ∈ 𝒫 is a chain if 𝑆1 ⊊ 𝑆2 ⊊ · · · ⊊ 𝑆𝑚.
Remember that we identify 𝑈 ∈ 𝒫 with an element in {0, 1}𝑑 ⊂ [0, 1]𝑑 . The
convex closure of 𝑓 is the function

ℎ(𝑥) = min

( ∑︁
𝑈∈𝒫

𝑝(𝑈) 𝑓 (𝑈) :
∑︁
𝑈∈𝒫

𝑝(𝑈)𝑈 = 𝑥, 𝑝 ∈ Δ(𝒫)
)
,
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which is convex by the theory of linear programming (Bertsimas and Tsitsiklis,
1997, §5.2). Suppose that 𝑓 is submodular. We will show that 𝑔 = ℎ. Define
𝜙(𝑝) = ∑

𝑈∈𝒫 𝑝(𝑈) |𝑈 |2 and let 𝑥 ∈ [0, 1]𝑑 be fixed. By compactness, there
exists a 𝑝 ∈ Δ(𝒫) such that

ℎ(𝑥) =
∑︁
𝑈∈𝒫

𝑝(𝑈) 𝑓 (𝑈) and 𝑥 =
∑︁
𝑈∈𝒫

𝑝(𝑈)𝑈 .

In case of ties, let 𝑝maximise 𝜙. Suppose that {𝑆 : 𝑝(𝑆) > 0} is not a chain. That
is, there exists 𝑆, 𝑇 ∈ 𝒫 with 𝑝(𝑆) ≥ 𝑝(𝑇) > 0 and 𝑆 ⊄ 𝑇 and 𝑇 ⊄ 𝑆. Consider
𝑞 = 𝑝 − 𝑝(𝑇)1𝑇 − 𝑝(𝑇)1𝑆 + 𝑝(𝑇)1𝑆∩𝑇 + 𝑝(𝑇)1𝑆∪𝑇 . Without any assumptions,∑
𝑈∈𝒫 𝑞(𝑈)𝑈 = 𝑥 and by submodularity, 𝑓 (𝑆 ∪𝑇) + 𝑓 (𝑆 ∩𝑇) ≤ 𝑓 (𝑆) + 𝑓 (𝑇),

which implies that
∑
𝑈∈𝒫 𝑞(𝑈) 𝑓 (𝑈) ≤

∑
𝑈∈𝒫 𝑝(𝑈) 𝑓 (𝑈). Furthermore,

|𝑆 ∪ 𝑇 |2 + |𝑆 ∩ 𝑇 |2 = |𝑆 |2 + |𝑇 |2 + 2|𝑇 \ 𝑆 | |𝑆 \ 𝑇 | > |𝑆 |2 + |𝑇 |2 .

But from this it follows that 𝜙(𝑞) > 𝜙(𝑝), contradicting our assumption that 𝑝
maximises 𝜙. Therefore {𝑆 : 𝑝(𝑆) > 0} is a chain and

∑
𝑆∈𝒫 𝑝(𝑆)𝑆 = 𝑥. We

leave you to prove that there is a unique chain satisfying these properties and to
conclude from (13.1) that ℎ(𝑥) = 𝑔(𝑥). Part (2) follows since ℎ is piecewise
linear (Bertsimas and Tsitsiklis, 1997, §5.2). Part (3) is immediate since 𝑔 is
an average of 𝑓 -values and the minimum is never larger than the average. □

Exercise 13.4 ⋆ Finish the proof of Theorem 13.3(1) as instructed above.

The Lovász extension also has nice computational properties. Given exact
access to 𝑓 you can compute it by noticing that the integrand in its definition
is piecewise linear with at most 𝑑 + 1 pieces. You only need to evaluate 𝑓 at
𝑑 + 1 different sets, all of which are easily found by sorting the coordinates
of 𝑥. Given 𝑥 ∈ [0, 1]𝑑 let 𝜎(·|𝑥) : [𝑑] → [𝑑] be a permutation such that
𝑘 ↦→ 𝑥𝜎 (𝑘 |𝑥 ) is non-increasing with ties broken arbitrarily. We adopt the
convention that 𝜎(0|𝑥) = 0 and 𝜎(𝑑 + 1|𝑥) = 𝑑 + 1 and 𝑥0 = 1 and 𝑥𝑑+1 = 0.
Let 𝑆(𝑘 |𝑥) = {𝜎(𝑖 |𝑥) : 𝑖 ∈ [𝑘]}, which means that

∅ = 𝑆(0|𝑥) ⊂ 𝑆(1|𝑥) ⊂ · · · ⊂ 𝑆(𝑑 |𝑥) = [𝑑] .

When all coordinates of 𝑥 are distinct, then 𝑆(𝑘 |𝑥) contains exactly the co-
ordinates associated with the 𝑘 largest entries of 𝑥. Then, with 𝑔 the Lovász
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extension of submodular function 𝑓 ,

𝑔(𝑥) =
∫ 1

0
𝑓 ({𝑖 : 𝑥𝑖 ≥ 𝑢}) d𝑢

=

𝑑∑︁
𝑘=0

𝑓 (𝑆(𝑘 |𝑥))
(
𝑥𝜎 (𝑘 |𝑥 ) − 𝑥𝜎 (𝑘+1 |𝑥 )

)
= 𝑓 (𝑆(0|𝑥)) +

𝑑∑︁
𝑘=1

𝑥𝜎 (𝑘 |𝑥 ) ( 𝑓 (𝑆(𝑘 |𝑥)) − 𝑓 (𝑆(𝑘 − 1|𝑥))) .

There is also a nice expression for the subgradients of the Lovász extension.
Staring at the above equality yields the following standard proposition:

Proposition 13.5 Let 𝑔 be the Lovász extension of submodular function 𝑓 and
𝑥 ∈ [0, 1]𝑑 and 𝜎−1 (·|𝑥) be the inverse of the permutation 𝜎(·|𝑥). Then the
vector 𝑢 ∈ R𝑑 with

𝑢𝑘 = 𝑓 (𝑆(𝜎−1 (𝑘 |𝑥) |𝑥)) − 𝑓 (𝑆(𝜎−1 (𝑘 |𝑥) − 1|𝑥))

is a subgradient of 𝑔 at 𝑥.

Exercise 13.6 ⋆ Prove Proposition 13.5.

You may wonder what properties the Lovász extension has. For example, is it
smooth, strongly convex or Lipschitz? A look at the definition reveals that it is
piecewise linear and hence it cannot be strongly convex and is only smooth in
the special case that it is linear. It is 2-Lipschitz, however:

Proposition 13.7 (Lemma 1, Jegelka and Bilmes 2011) The Lovász extension
𝑔 of a submodular function 𝑓 : 𝒫 → [0, 1] satisfies lip(𝑔) ≤ 2.

Proof By Theorem 13.3, 𝑔 is convex and piecewise linear so that lip(𝑔) ≤
sup𝑥 ∥𝑔′ (𝑥)∥ where the supremum is over all 𝑥 where 𝑔 is differentiable. Let
𝑥 ∈ (0, 1)𝑑 be any point where 𝑔 is differentiable and abbreviate 𝑆(𝑘) = 𝑆(𝑘 |𝑥)
and 𝜎(𝑘) = 𝜎(𝑘 |𝑥). By Proposition 13.5,

𝑔′𝑘 (𝑥) = 𝑓 (𝑆(𝜎−1 (𝑘))) − 𝑓 (𝑆(𝜎−1 (𝑘) − 1)) .

Let 𝑃 = {𝑘 : 𝑔′
𝑘
(𝑥) > 0}, then

∥𝑔′ (𝑥)∥ ≤ ∥𝑔′ (𝑥)∥1 =
∑︁
𝑘∈𝑃

𝑔′𝑘 (𝑥) −
∑︁

𝑘∈[𝑑 ]\𝑃
𝑔′𝑘 (𝑥)

= 2
∑︁
𝑘∈𝑃

𝑔′𝑘 (𝑥) −
∑︁
𝑘∈[𝑑 ]

𝑔′𝑘 (𝑥) (13.2)
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The last term telescopes:

−
∑︁
𝑘∈[𝑑 ]

𝑔′𝑘 (𝑥) = 𝑓 (∅) − 𝑓 ( [𝑑]) . (13.3)

For the other term in (13.2), reorder the terms in the sum so that

2
∑︁
𝑘∈𝑃

𝑔′𝑘 (𝑥) = 2
|𝑃 |∑︁
𝑚=1

( 𝑓 (𝑆(𝜋(𝑚))) − 𝑓 (𝑆(𝜋(𝑚) − 1))) ,

where 𝑚 ↦→ |𝑆(𝜋(𝑚)) | is increasing. This sum does not obviously telescope.
Let us now make use of submodularity. Let 𝑎𝑚 = 𝑆(𝜋(𝑚)) \ 𝑆(𝜋(𝑚) − 1) and
𝐴𝑚 = {𝑎1, . . . , 𝑎𝑚}. Since ∅ ⊂ 𝑆(1) ⊂ · · · ⊂ 𝑆(𝑑) = [𝑑] is a chain, we have
𝐴𝑚 ⊂ 𝑆(𝜋(𝑚)) and therefore by submodularity,

𝑓 (𝐴𝑚) − 𝑓 (𝐴𝑚−1) ≥ 𝑓 (𝑆(𝜋(𝑚))) − 𝑓 (𝑆(𝜋(𝑚) − 1)) .

Therefore

2
|𝑃 |∑︁
𝑚=1

( 𝑓 (𝑆(𝜋(𝑚))) − 𝑓 (𝑆(𝜋(𝑚) − 1))) ≤ 2
|𝑃 |∑︁
𝑚=1

( 𝑓 (𝐴𝑚) − 𝑓 (𝐴𝑚−1)) (13.4)

= 2 𝑓 (𝐴 |𝑃 | ) − 2 𝑓 (∅) . (13.5)

Combining (13.3) and (13.5) with (13.2) shows that

∥𝑔′ (𝑥)∥ ≤ 2 𝑓 (𝐴 |𝑃 | ) − 𝑓 (∅) − 𝑓 ( [𝑑]) ≤ 2 . □

13.2 Bandit submodular minimisation

We now explain how to use the Lovász extension as a bridge between bandit
convex optimisation on the hypercube and bandit submodular minimisation. Let
𝑔𝑡 be the Lovász extension of 𝑓𝑡 and 𝐾 = [0, 1]𝑑 the hypercube.

Exercise 13.8 ⋆ Show that 𝑓 =
∑𝑛
𝑡=1 𝑓𝑡 is submodular and the Lovász

extension 𝑓 is
∑𝑛
𝑡=1 𝑔𝑡 .

Your solution to Exercise 13.8 combined with Theorem 13.3(3) shows
that

∑𝑛
𝑡=1 𝑔𝑡 is minimised at some 𝑥★ ∈ {0, 1}𝑑 . Consider a bandit convex

optimisation algorithm playing on 𝐾 and (𝑋𝐾𝑡 )𝑛𝑡=1 be actions in 𝐾 proposed
by the bandit algorithms. We need a way to select the real actions 𝑋𝑡 ⊂ [𝑑]
and return losses to the algorithm. This is done by sampling 𝜆𝑡 uniformly from
[0, 1] and letting 𝑋𝑡 = {𝑖 : (𝑋𝐾𝑡 )𝑖 ≥ 𝜆𝑡 }. Then the loss is 𝑌𝑡 = 𝑓𝑡 (𝑋𝑡 ) + 𝜀𝑡 . By
Exercise 13.2, E𝑡−1 [𝑌𝑡 ] = 𝑔𝑡 (𝑋𝐾𝑡 ) so this procedure is equivalent to the learner
interacting with the Lovász extension sequence. The following proposition
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shows that the regret of iterates (𝑋𝐾𝑡 ) with respect to the Lovász extension
implies a regret bound for the original bandit submodular optimisation problem.

Proposition 13.9 Let (𝑋𝐾𝑡 )𝑛𝑡=1 ∈ 𝐾 and (𝑋𝑡 )𝑛𝑡=1 and (𝑌𝑡 )𝑛𝑡=1 be defined as
above. Then, with probability at least 1 − 𝛿,

Reg𝑛 ≜
𝑛∑︁
𝑡=1

( 𝑓𝑡 (𝑋𝑡 ) − 𝑓𝑡 (𝑋★)) ≤ gReg𝑛 +
√︁

2𝑛 log(1/𝛿) ,

where gReg𝑛 =
∑𝑛
𝑡=1

(
𝑔𝑡 (𝑋𝐾𝑡 ) − 𝑔𝑡 (𝑥★)

)
.

Proof As we argued above,
∑𝑛
𝑡=1 𝑔𝑡 (𝑥★) =

∑𝑛
𝑡=1 𝑓𝑡 (𝑋★). Then

gReg𝑛 =
𝑛∑︁
𝑡=1

(
𝑔𝑡 (𝑋𝐾𝑡 ) − 𝑔𝑡 (𝑥★)

)
=

𝑛∑︁
𝑡=1

(
𝑔𝑡 (𝑋𝐾𝑡 ) − 𝑓𝑡 (𝑋★)

)
=

𝑛∑︁
𝑡=1

( 𝑓𝑡 (𝑋𝑡 ) − 𝑓𝑡 (𝑋★)) +
𝑛∑︁
𝑡=1

(
𝑔𝑡 (𝑋𝐾𝑡 ) − 𝑓𝑡 (𝑋𝑡 )

)
= Reg𝑛 +

𝑛∑︁
𝑡=1

(
𝑔𝑡 (𝑋𝐾𝑡 ) − 𝑓𝑡 (𝑋𝑡 )

)
.

By definition,

𝑔𝑡 (𝑋𝐾𝑡 ) = E𝑡−1 [ 𝑓𝑡 (𝑋𝑡 ) |𝑋𝐾𝑡 ] .

Therefore the sum is a martingale with increments bounded in [−1, 1] and by
Azuma’s inequality (Theorem B.18), with probability at least 1 − 𝛿,

Reg𝑛 ≤ gReg𝑛 +
√︁

2𝑛 log(1/𝛿) . □

Consequentially, any algorithm for bandit convex optimisation can be used
for submodular minimisation with very little overhead. When looking at the
complete list of algorithms in Section 2.5, remember that for the hypercube
we have diam(𝐾) =

√
𝑑 and the self-concordance parameter is 𝜗 = Θ(𝑑).

Moreover, except for scaling 𝐾 is already in Löwner’s position. The special
structure of the Lovász extension allows for at least one new idea, which we
explain in Section 13.3. Table 13.1 more or less summarises the state-of-the-art
in bandit submodular optimisation.
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author regret/comp compute notes

Hazan and Kale (2012) 𝑑𝑛2/3 𝑂 (𝑑 log 𝑑)
Fokkema et al. (2024) 𝑑1.5√𝑛 𝑂 (𝑑2 ) + Π + svd stochastic only

Fokkema et al. (2024) 𝑑2.5√𝑛 poly(𝑑, 𝑛)
This book 𝑑3

𝜀2 𝑂 (𝑑 log(𝑑) ) stochastic only

Table 13.1: Regret bounds for various algorithms for bandit submodular
minimisation

13.3 Gradient descent for submodular minimisation

By applying the algorithm in Chapter 5 you can immediately obtain a regret
of E[Reg𝑛] = 𝑂 (𝑑3/4𝑛3/4). It is instructive to revisit gradient descent for
submodular minimisation via the Lovász extension because the special structure
of the problem leads to a significant improvement with almost no additional
work. At the same time, in Chapter 2 we promised to explain the phenomenon
noted by Shamir (2013) that for quadratic bandits the simple regret is Θ(𝑑2/𝑛)
while the cumulative regret is Ω(𝑑

√
𝑛). This curious situation is a consequence

of two factors:

◦ In the simple regret setting the learner can afford to play actions far from the
minimiser 𝑥★; and

◦ In many parametric settings these actions can be far more informative than
playing actions close to 𝑥★ because they allow the learner to reduce variance.

This situation arises in submodular bandits where a very simple algorithm
has sReg𝑛 = 𝑂 (𝑑1.5/

√
𝑛) simple regret, while the algorithms with Reg𝑛 =

𝑂 (𝑑1.5√𝑛) are all sophisticated second-order methods. The idea is to play
gradient descent on the Lovász extension and estimate the gradient by sampling
from a subset of corners of the hypercube. The cumulative regret incurred with
this approach is linear but the variance of the gradient estimate is small, which
leads to small simple regret.

Gradient descent Algorithm 13.3 plays gradient descent on the Lovász ex-
tension to produce a sequence of iterates (𝑥𝑡 )𝑛𝑡=1 but replaces the spherical
smoothing using in Algorithm 5.2 with another mechanism for estimating the
gradient. With probability 𝛾 ∈ (0, 1) the algorithm explores and otherwise it
exploits:

◦ When exploring the algorithm samples 𝑘𝑡 uniformly on {0, 1, . . . , 𝑑} and
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plays 𝑆𝑡 = 𝑆(𝑘𝑡 |𝑥𝑡 ). The result can be used to estimate an element of 𝜕𝑔𝑡 (𝑥𝑡 )
using importance-weighting and Proposition 13.5.

◦ When exploiting the algorithm samples 𝜆𝑡 uniformly from [0, 1] and plays
{𝑘 : (𝑥𝑡 )𝑘 ≥ 𝜆𝑡 }, which in expectation leads to a loss of 𝑔𝑡 (𝑥𝑡 ).

When minimising the simple regret we choose 𝛾 = 1 so that the algorithm
always explores. Otherwise 𝛾 is tuned to balance exploration and exploitation.

1 args : 𝜂 > 0 , 𝛾 ∈ (0, 1)
2 l e t 𝑥1 ∈ [0, 1]𝑑
3 f o r 𝑡 = 1 to 𝑛

4 sample 𝜆𝑡 from 𝒰( [0, 1]) and l e t 𝑆𝑡 = {𝑘 : (𝑥𝑡 )𝑘 ≥ 𝜆𝑡 }
5 sample 𝑘𝑡 u n i f o r m l y from {0, 1, . . . , 𝑑}

6 l e t 𝐸𝑡 =

{
1 with prob. 𝛾
0 with prob. 1 − 𝛾

and 𝑋𝑡 =

{
𝑆(𝑘𝑡 |𝑥𝑡 ) if 𝐸𝑡 = 1
𝑆𝑡 if 𝐸𝑡 = 0

7 o b s e r v e 𝑌𝑡 = 𝑓 (𝑋𝑡 ) + 𝜀𝑡
8 l e t 𝑣̂𝑡 =

(𝑑+1)𝑌𝑡𝐸𝑡
𝛾

[
1(𝑘𝑡 ≠ 0)𝑒𝜎 (𝑘𝑡 |𝑥𝑡 ) − 1(𝑘𝑡 ≠ 𝑑)𝑒𝜎 (𝑘𝑡+1 |𝑥𝑡 )

]
9 u p d a t e 𝑥𝑡+1 = arg min𝑥∈[0,1]𝑑 ∥𝑥 − [𝑥𝑡 − 𝜂𝑣̂𝑡 ] ∥

10 l e t 𝑋𝑛 =
1
𝑛

∑𝑛
𝑡=1 𝑥𝑡

11 sample 𝑈 from 𝒰( [0, 1])
12 re turn 𝑆𝑛 =

{
𝑘 : (𝑋𝑛)𝑘 ≥ 𝑈

}
Algorithm 13.1: Gradient descent for bandit submodular simple regret minimi-
sation

Theorem 13.10 The following hold for Algorithm 13.1:

(1) Suppose that 𝛾 = (1 + 𝑑)𝑛−1/3 and 𝜂 = 1
2𝑛

−2/3. Then the cumulative
regret in the adversarial setting is bounded by

E[Reg𝑛] ≤ 3(𝑑 + 1)𝑛2/3 = 𝑂 (𝑑𝑛2/3) .

(2) Suppose that 𝛾 = 1 and 𝜂 = 1
2+2𝑑

√︃
𝑑
𝑛

. Then in the stochastic setting the
simple regret of Algorithm 13.1 is bounded by

E
[
sReg𝑛

]
≤ 2(1 + 𝑑)

√︂
𝑑

𝑛
= 𝑂

(
𝑑1.5
√
𝑛

)
.

Proof Since Reg𝑛 ≤ 𝑛 for any algorithm, we assume for the remainder that
𝛾 ∈ (0, 1] since otherwise the claimed regret bound in Part (1) holds for
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any algorithm. Let 𝑔𝑡 be the Lovász extension of 𝑓𝑡 and 𝑣𝑡 ∈ 𝜕𝑔𝑡 (𝑥𝑡 ) be the
subgradient defined in Proposition 13.5.

Exercise 13.11 ⋆ Show that E𝑡−1 [𝑣̂𝑡 ] = 𝑣𝑡 .

We are now in a position to bound the regret of the iterates:

E

[
𝑛∑︁
𝑡=1

(𝑔𝑡 (𝑥𝑡 ) − 𝑔𝑡 (𝑥★))
]
(a)

≤ E

[
𝑛∑︁
𝑡=1

⟨𝑣𝑡 , 𝑥𝑡 − 𝑥★⟩
]

(b)

≤ diam(𝐾)2

2𝜂
+ 𝜂

2

𝑛∑︁
𝑡=1

E
[
∥𝑣̂𝑡 ∥2]

(c)

=
𝑑

2𝜂
+ 𝜂

2

𝑛∑︁
𝑡=1

E
[
∥𝑣̂𝑡 ∥2]

(d)

≤ 𝑑

2𝜂
+ 2𝜂𝑛(𝑑 + 1)2

𝛾
, (13.6)

where (a) follows from convexity of 𝑔𝑡 , (b) by Exercise 13.11 and Theorem 5.2,
(c) since diam(𝐾) =

√
𝑑. (d) follows because

E
[
∥𝑣̂𝑡 ∥2] ≤ 2E

[
𝐸𝑡

(
(𝑑 + 1)𝑌𝑡

𝛾

)2
]
≤ 4E

[
𝐸𝑡

(
𝑑 + 1
𝛾

)2
]
≤ 4(𝑑 + 1)2

𝛾
,

where we used (1.3) and the assumption that 𝑓𝑡 is bounded in [0, 1] to bound
E𝑡−1 [𝑌2

𝑡 |𝐸𝑡 ] = E𝑡−1 [( 𝑓𝑡 (𝑋𝑡 ) + 𝜀𝑡 )2 |𝐸𝑡 ] ≤ 2. By definition the regret satisfies

E[Reg𝑛] = E

[
𝑛∑︁
𝑡=1

𝑓𝑡 (𝑋𝑡 ) − 𝑓𝑡 (𝑥★)
]

= E

[
𝑛∑︁
𝑡=1

𝑓𝑡 (𝑋𝑡 ) − 𝑔𝑡 (𝑥𝑡 )
]
+ E

[
𝑛∑︁
𝑡=1

𝑔𝑡 (𝑥𝑡 ) − 𝑔𝑡 (𝑥★)
]

≤ 𝑛𝛾 + 𝑑

2𝜂
+ 2𝜂𝑛(𝑑 + 1)2

𝛾
,

where in the final inequality we used the fact that

E𝑡−1 [ 𝑓𝑡 (𝑋𝑡 )] = E𝑡−1 [𝐸𝑡 𝑓𝑡 (𝑋𝑡 )] + E𝑡−1 [(1 − 𝐸𝑡 ) 𝑓𝑡 (𝑋𝑡 )]
= E𝑡−1 [𝐸𝑡 𝑓𝑡 (𝑋𝑡 )] + E𝑡−1 [(1 − 𝐸𝑡 ) 𝑓𝑡 (𝑆𝑡 )]
= E𝑡−1 [𝐸𝑡 𝑓𝑡 (𝑋𝑡 )] + (1 − 𝛾)𝑔𝑡 (𝑥𝑡 )
≤ 𝛾 + 𝑔𝑡 (𝑥𝑡 ) .

The bound on the adversarial regret now follows by substituting the definition
of the parameters. To bound the simple regret in the stochastic setting where
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𝑓𝑡 = 𝑓 and 𝑔 = 𝑔𝑡 is the Lovász extension of 𝑓 , By substituting the parameters
into (13.6),

E

[
𝑛∑︁
𝑡=1

(𝑔(𝑥𝑡 ) − 𝑔(𝑥★))
]
≤ 2(𝑑 + 1)

√
𝑑𝑛 . (13.7)

Then, using the definitions at the end of the algorithm and convexity of the
Lovász extension,

E
[
𝑓 (𝑆𝑛)

]
Ex. 13.2

= E
[
𝑔(𝑋𝑛)

]
𝑔 cvx

≤ E

[
1
𝑛

𝑛∑︁
𝑡=1

𝑔(𝑥𝑡 )
]
by (13.7)

≤ 𝑔(𝑥★) + 2(𝑑 + 1)
√︂
𝑑

𝑛
.

Since 𝑔(𝑥★) = 𝑓 (𝑋★) it follows that

E[sReg𝑛] ≤ 2(𝑑 + 1)
√︂
𝑑

𝑛
. □

So what has been achieved? Algorithm 13.1 is computationally practical and
has excellent simple regret when 𝛾 = 1. On the other hand, the dependence of
its regret on 𝑛 is suboptimal, though in some regimes it is theoretically superior
to Algorithm 11.3 in the adversarial setting and its analysis and implementation
are much simpler than Algorithm 10.2 in the stochastic setting.

13.4 Notes

13.i: There are many resources to study submodular functions and optimisa-
tion. For example, the book by Bach (2013) or the wonderful short survey by
Bilmes (2022).

13.ii: Algorithm 13.1 is due to Hazan and Kale (2012), though the elementary
simple regret analysis is new.

13.iii: Bandit submodular maximisation is another topic altogether and has
its own rich literature (Gabillon et al., 2013; Zhang et al., 2019; Foster and
Rakhlin, 2021; Chen et al., 2017; Takemori et al., 2020; Tajdini et al., 2024;
Niazadeh et al., 2021). Even in the classical optimisation setting without noise,
exact submodular maximisation is computationally intractable. Approximately
maximising submodular functions is often possible, however, at least provided
the constraints are reasonably well behaved. Because of this the standard
approach in bandit submodular maximisation is to prove that

𝑛∑︁
𝑡=1

𝑓𝑡 (𝑋𝑡 ) ≥ 𝛼max
𝑋∈C

𝑛∑︁
𝑡=1

𝑓𝑡 (𝑋) + 𝑜(𝑛) ,
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where 𝛼 ∈ (0, 1) is the approximation ratio, which depends on the constraints
C and assumptions on the functions ( 𝑓𝑡 ). For example, when the functions ( 𝑓𝑡 )
are assumed to be submodular and monotone and C = {𝑋 ⊂ [𝑑] : |𝑋 | ≤ 𝑘},
then Niazadeh et al. (2021) design an efficient algorithm such that(

1 − 1
𝑒

)
max
𝑋∈C

𝑛∑︁
𝑡=1

𝑓𝑡 (𝑋) − E

[
𝑛∑︁
𝑡=1

𝑓𝑡 (𝑋𝑡 )
]
= 𝑂̃ (𝑘𝑑2/3𝑛2/3) .

In the stochastic setting the regret can be improved to 𝑂̃ (𝑘𝑑1/3𝑛2/3), which is
essentially the best achievable (Tajdini et al., 2024).

13.iv: The Lovász extension is due to Lovász (1983) and provides the inter-
face between submodular bandits and convex bandits but introduces additional
noise. This is one justification for ensuring your algorithm can handle additional
noise, even in the adversarial setting.

13.v: The complexity of minimising a submodular functions 𝑓 without noise
is still an active area of research. Let 𝑔 be the Lovász extension of 𝑓 and
𝑓★ = min𝑥∈{0,1}𝑑 𝑔(𝑥). By Proposition 13.5 a subgradient of 𝑔 can be computed
with 𝑂 (𝑑) queries to the 𝑓 . Combining this with cutting plane methods (Bach,
2013; Bubeck, 2015) shows that with 𝑂 (𝑑2 log(𝑑/𝜀)) queries to 𝑓 one can find
an 𝑥̂ ∈ [0, 1]𝑑 such that 𝑔(𝑥̂) ≤ 𝑓★ + 𝜀. Then let

𝑆 = arg min{𝑆(𝑘 |𝑥̂) : 0 ≤ 𝑘 ≤ 𝑑} ,

which can be evaluated with another 𝑂 (𝑑) queries to the loss function 𝑓 and
satisfies 𝑓 (𝑆) ≤ 𝑓★ + 𝜀. The discrete structure of submodular optimisation
means you can even achieve exact minimisation (Jiang, 2022).



14
Outlook

The tool-chest for convex bandits and zeroth-order optimisation has been
steadily growing in recent decades. Nevertheless, there are many intriguing
open questions both theoretical and practical. The purpose of this short chapter
is to highlight some of the most important (in the author’s view, of course) open
problems.

14.i: The most fundamental problem is to understand the minimax regret
for ℱb. The lower bound is Ω(𝑑

√
𝑛) and the upper bound is 𝑂̃ (𝑑1.5√𝑛) in the

stochastic setting and 𝑂̃ (𝑑2.5√𝑛) in the adversarial setting.

14.ii: From a practical perspective the situation is still relatively dire for
𝑑 > 1. The algorithms that are simple and efficient to implement have slow
convergence rates without smoothness and strong convexity. Algorithms with
fast convergence rates have awkward assumptions. For example, online Newton
step learns fast for ℱs

b
and is difficult to tune. Is there a simple algorithm that

works well in practice without too much tuning and obtains the fast rate?

14.iii: Algorithms that manage 𝑂̃ (poly(𝑑)
√
𝑛) regret without smoothness

and strong convexity all estimate some kind of curvature or use continuous
exponential weights. In particular, they use Ω(𝑑2) memory. Can you prove this
is necessary?

14.iv: In the stochastic setting both the range of the loss function and Orlicz
norm (or maybe variance) of the noise should appear in the regret. This is
hidden throughout because in most places we (questionably) opted to fix the
range to [0, 1] and the Orlicz norm of the noise to 1. If you repeat the analysis
naively for most settings you will find that for losses bounded in [0, 𝐵] and
Orlicz norm bound of 𝜎, the leading term in the regret is 𝐵 + 𝜎. For example,
for online Newton step with 𝐾 in Löwner’s position we would have a regret
of 𝑂̃ ((𝐵 + 𝜎)𝑑1.5√𝑛). Really, however, the range of the losses should appear

237
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in a lower-order term, since over time an algorithm with sublinear regret will
play in a region where the range of the losses is small (otherwise it would
have high regret). Handling this properly in the analysis is probably quite
complicated and maybe not fundamentally that interesting. But could lead to
practical improvements in many cases. Note, we did things properly in Chapter 4
where the loss was not assumed to be bounded and also in Section 6.6. The
techniques developed there may be adaptable to other algorithms, including
cutting plane methods and online Newton step.

14.v: More adaptive algorithms are needed. We have seen a plethora of
results for this algorithm or that with such-and-such assumptions. But what if
you don’t know what class the losses lie in. Can you adapt? What is the price?
Very few works consider this or have serious limitations. A good place to start
is the paper by Luo et al. (2022). We also assumed that 𝑛 is known upfront
and used this to tune learning rates or other parameters. You can always use a
doubling trick (Besson and Kaufmann, 2018), but generally speaking you would
expect better practical performance by using a decaying learning rate. We would
not expect to encounter too many challenges implementing this idea, but the
devil may be in the details. For example, the set 𝐾𝜀 usually depends on 𝑛 via 𝜀
in many algorithms. And in the analysis of online Newton step the definition of
the extended loss would become time-dependent.

14.vi: There is scope to refine the algorithms and analysis in this text to
the non-convex case. Of course, proving bounds relative to a stationary point
rather than a global minimum. Someone should push this program through.
Alternatively, one may still focus on the finding the global minimum but with
weaker assumptions such as quasi-convexity or losses that satisfy the Polyak–
Lojasiewicz condition (Polyak, 1963; Karimi et al., 2016; Akhavan et al., 2024b).
Note that these function classes are not closed under addition and hence are not
amenable to the adversarial setting.

14.vii: Almost all of the properties we proved for the optimistic surrogate
relied on Gaussianity of the exploration distribution. Two properties that do
not rely on this, however, are optimism and convexity. This leaves hope that
something may be possible using an exponential weights distribution rather
than a Gaussian and this may interact better with the geometry of the constraint
set. This seems to have been the original plan of Bubeck et al. (2017) before
they resorted to approximating exponential weights distributions by Gaussians.
Perhaps you can make it work.

14.viii: Suggala et al. (2021) and Bubeck et al. (2017) both handle adversar-
ial problems by some sort of test to see if the adversary is moving the minimum



Outlook 239

and proving that if this occurs, then the regret must be negative and it is safe to
restart the algorithm. One might wonder if there is some black box procedure to
implement this program so that any algorithm designed for the stochastic setting
can be used in the adversarial setting.

14.ix: It would be fascinating to gain a better understanding of Algorithm 8.3.
What loss estimators does it use? Maybe you can somehow implement this
algorithm when 𝑑 = 1 or derive analytically what the estimators look like for
special cases.

14.x: There is potential to unify the algorithms and analysis from stochastic
approximation and bandit convex optimisation. The former is generally focussed
on precise asymptotics while the latter concentrate on minimax finite-time
regret. At the moment there is very little integration between these fields, even
though many of the ideas are the same.

14.xi: You could spend a huge amount of time generalising the conditions
on the noise. For example, to heavy tailed distributions. This has been widely
explored in the multi-armed bandit setting (Bubeck et al., 2013, and citations
to/from). Probably this should only be done if you have a particular application
in mind. Alternatively, you could investigate heteroscedastic or multiplicative
noise, with an initial foray by (Jingxin et al., 2025).

14.xii: When 𝑑 = 1 the best bound on the cumulative regret for losses in
ℱb is 𝑂 (

√
𝑛 log(𝑛)). On the other hand, Cheshire et al. (2020) have shown

that the minimax simple regret is Θ(
√︁

log log(𝑛)/𝑛). What is the minimax
cumulative regret and does it depend on whether or not the setting is adversarial
or stochastic?

14.xiii: This entire book is about bandit convex optimisation on subsets of
euclidean space. Convexity and the convex bandit problem can be generalised
to Riemannian manifolds. Ao et al. (2025) start this program by constructing
the Riemannian analogue of Algorithm 6.2 and proving that under appropriate
smoothness conditions its regret is𝑂 (𝑛2/3). The extent to which other algorithms
and analyses in this book can be generalised to the non-euclidean setting is
probably quite a fascinating question.



Appendix A
Miscellaneous

A.1 Identities

Proposition A.1 (§4.9.1.4, Zwillinger 2018) Let Γ(·) be Euler’s gamma
function. Then:

(1) vol(B𝑑𝑟 ) = 𝑟𝑑 𝜋𝑑/2

Γ( 𝑑2 +1) .

(2) vol(S𝑑−1
𝑟 ) = 𝑑

𝑟
vol(B𝑑𝑟 ).

The next proposition is the standard formula for integration in spherical
coordinates, which follows from the coarea formula (Evans, 2018, Appendix C)
or by direct proof.

Proposition A.2 Suppose that 𝑓 : R𝑑 → R satisfies 𝑓 (𝑥) = 𝑔(∥𝑥∥) for some
𝑔 : R𝑑 → R. Then, as long as either left-hand or right-hand side below is
well-defined, ∫

B𝑑𝑟
𝑓 (𝑥) d𝑥 = 𝑑 vol(B𝑑1 )

∫ 𝑟

0
𝑠𝑑−1𝑔(𝑠) d𝑠 .

Proposition A.3 Suppose that𝑊 has law N (0,Σ). Then,

(1) E[∥𝑊 ∥2] = tr(Σ).
(2) E[∥𝑊 ∥4] = tr(Σ)2 + 2 tr(Σ2).
(3) E[exp(⟨𝑊, 𝑎⟩)] = exp

(
1
2 ∥𝑎∥2

Σ

)
.

Proof Let 𝑍 have law N (0,1). Then 𝑊 and Σ1/2𝑍 have the same law.
Therefore E[∥𝑊 ∥2] = E[∥Σ1/2𝑍 ∥2] = E[𝑍⊤Σ𝑍] = E[tr(𝑍𝑍⊤Σ)] = tr(Σ).
For the second part, since the euclidean norm is rotationally invariant we can
assume without loss of generality that Σ is diagonal. Then write ∥𝑊 ∥2 as a
sum and expand the square E[∥𝑊 ∥4] = E[∥𝑊 ∥2 ∥𝑊 ∥2] and use the fact that
E[𝑍4

𝑘
] = 3. Finally, note that 𝑋 = ⟨𝑊, 𝑎⟩ has law N (0, ∥𝑎∥2

Σ), which has

240



A.2 Moore-Penrose pseudoinverse 241

moment-generating function 𝑀𝑋 (𝜆) ≜ E[exp(𝜆𝑋)] = exp(𝜆2 ∥𝑎∥2
Σ /2) and the

result follows by substituting 𝜆 = 1. □

Proposition A.4 Suppose that 𝑋 has law U (B𝑑1 ). Then E[∥𝑋 ∥] = 𝑑
𝑑+1 .

Proof By Proposition A.2,

E[∥𝑋 ∥] = 1
vol(B𝑑1 )

∫
B𝑑1

∥𝑥∥ d𝑥 = 𝑑
∫ 1

0
𝑟𝑑 d𝑟 =

𝑑

𝑑 + 1
. □

A.2 Moore-Penrose pseudoinverse

Given a matrix 𝐴 ∈ R𝑚×𝑛, the Moore-Penrose pseudoinverse is a matrix
𝐴+ ∈ R𝑛×𝑚 such that all of the following hold:

(1) 𝐴𝐴+𝐴 = 𝐴.
(2) 𝐴+𝐴𝐴+ = 𝐴+.
(3) (𝐴𝐴+)⊤ = 𝐴𝐴+.
(4) (𝐴+𝐴)⊤ = 𝐴+𝐴.

Proposition A.5 The Moore-Penrose psuedoinverse of any 𝐴 ∈ R𝑚×𝑛 exists
and is unique.

Proof Let 𝐴 = 𝑈𝐷𝑉⊤ be the singular value decomposition of 𝐴, which means
that 𝐷 is diagonal and𝑈 and 𝑉 have orthonormal columns. A straightforward
calculation shows that if 𝐷 has diagonal 𝜆1, . . . , 𝜆𝑘 , then 𝐷+ is the diagonal
matrix with diagonal 𝜌1, . . . , 𝜌𝑘 and 𝜌𝑖 = 1/𝜆𝑖 for 𝜆𝑖 ≠ 0 and 0 otherwise. Then
𝐴+ = 𝑉𝐷+𝑈⊤ straightforwardly satisfies the conditions of being a pseudoinverse.
For uniqueness, let 𝐵 and 𝐶 be two matrices satisfying the conditions. Then

𝐴𝐵 = 𝐴𝐶𝐴𝐵 = (𝐴𝐶)⊤ (𝐴𝐵)⊤ = 𝐶⊤𝐴⊤𝐵⊤𝐴⊤ = 𝐶⊤ (𝐴𝐵𝐴)⊤ = 𝐶⊤𝐴⊤ = 𝐴𝐶 .

Similarly, 𝐵𝐴 = 𝐶𝐴. Therefore 𝐵 = 𝐵𝐴𝐵 = 𝐵𝐴𝐶 = 𝐶𝐴𝐶 = 𝐶. □

Fact 6 Suppose that 𝐴 ∈ R𝑚×𝑛 is a matrix and 𝑦 ∈ im(𝐴⊤) and 𝜃 ∈ R𝑛. Then
⟨𝑦, 𝐴+𝐴𝜃⟩ = ⟨𝑦, 𝜃⟩.

Proof By assumption there exists a 𝑤 such that 𝑦 = 𝐴⊤𝑤 and so ⟨𝑦, 𝐴+𝐴𝜃⟩ =
⟨𝐴⊤𝑤, 𝐴+𝐴𝜃⟩ = ⟨𝑤, 𝐴𝐴+𝐴𝜃⟩ = ⟨𝑤, 𝐴𝜃⟩ = ⟨𝐴⊤𝑤, 𝜃⟩ = ⟨𝑦, 𝜃⟩. □

Fact 7 Suppose that 𝐴, 𝐵 are positive semidefinite and 𝐴 ⪰ 𝐵. Then 𝐴+ ⪯ 𝐵+

if and only if ker(𝐴) = ker(𝐵).

Fact 8 Suppose that 𝐴 ∈ R𝑚×𝑛. Then tr(𝐴𝐴+) = tr(𝐴+𝐴) = rank(𝐴).
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Proof Let 𝐴 = 𝑈𝐷𝑉⊤ be the singular value decomposition of 𝐴 so that𝑈 and
𝑉 have orthonormal columns and 𝐷 is diagonal with rank(𝐴) nonzero entries.
Then

tr(𝐴𝐴+) = tr(𝑈𝐷𝐷+𝑈⊤) = tr(𝐷𝐷+) = rank(𝐴) .

Moreover, tr(𝐴+𝐴) = tr(𝐷+𝐷) = tr(𝐷𝐷+) = rank(𝐴). □

A.3 Technical inequalities

Lemma A.9 Suppose that 𝐴 is positive definite and 𝐴 ⪯ 1. Then tr(𝐴) ≤
2 log det(1 + 𝐴).

Proof Use the fact that the trace is the sum of the eigenvalues and the
determinant is the product and that 𝑥 ≤ 2 log(1 + 𝑥) for 𝑥 ∈ [0, 1]. □

Lemma A.10 Suppose 𝑥, 𝑦 > 0 and 𝑥1 ⪯ 𝐴 ∈ S𝑑+. Then log det(𝐴 + 𝑦1) ≤
log det(𝐴) + 𝑑𝑦

𝑥
.

Proof Let (𝜆𝑘)𝑑𝑘=1 be the eigenvalues of 𝐴. The eigenvalues of 𝐴 + 𝑦1 are
(𝜆𝑘 + 𝑦)𝑑𝑘=1 and by concavity of the logarithm,

log det(𝐴 + 𝑦1) =
𝑑∑︁
𝑘=1

log(𝜆𝑘 + 𝑦1)

≤
𝑑∑︁
𝑘=1

(
log(𝜆𝑘) +

𝑦

𝜆𝑘

)
≤

𝑑∑︁
𝑘=1

log(𝜆𝑘) +
𝑑𝑦

𝑥

= log det(𝐴) + 𝑑𝑦

𝑥
. □

Lemma A.11 Suppose that 𝑓 (𝑥) = ∥𝑥 − 𝑦∥2
𝐴 and 𝑔(𝑥) = ∥𝑥 − 𝑧∥2

𝐵 with
𝐴, 𝐵 ∈ S𝑑++. Then

min
𝑥∈R𝑑

( 𝑓 (𝑥) + 𝑔(𝑥)) = ∥𝑧 − 𝑦∥2
𝐴−𝐴(𝐴+𝐵)−1𝐴

.

Proof Let ℎ(𝑥) = 𝑓 (𝑥) + 𝑔(𝑥). Then ℎ is quadratic and strictly convex and
hence has a unique minimiser at 𝑥 ∈ R𝑑 with

0 = ℎ′ (𝑥) = 2𝐴(𝑥 − 𝑦) + 2𝐵(𝑥 − 𝑧) .
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Solving shows that 𝑥 = (𝐴 + 𝐵)−1 (𝐴𝑦 + 𝐵𝑧) and therefore

min
𝑥∈R𝑑

ℎ(𝑥) =


(𝐴 + 𝐵)−1 (𝐴𝑦 + 𝐵𝑧) − 𝑦



2
𝐴
+



(𝐴 + 𝐵)−1 (𝐴𝑦 + 𝐵𝑧) − 𝑧


2
𝐵

=


(𝐴 + 𝐵)−1 (𝐵𝑧 − 𝐵𝑦)



2
𝐴
+



(𝐴 + 𝐵)−1 (𝐴𝑦 − 𝐴𝑧)


2
𝐵

= ∥𝑧 − 𝑦∥2
𝐻 ,

where

𝐻 = 𝐵(𝐴 + 𝐵)−1𝐴(𝐴 + 𝐵)−1𝐵 + 𝐴(𝐴 + 𝐵)−1𝐵(𝐴 + 𝐵)−1𝐴

= 𝐴(𝐴 + 𝐵)−1𝐵 + 𝐴(𝐴 + 𝐵)−1 [
−𝐴(𝐴 + 𝐵)−1𝐵 + 𝐵(𝐴 + 𝐵)−1𝐴

]
= 𝐴(𝐴 + 𝐵)−1𝐵

= 𝐴 − 𝐴(𝐴 + 𝐵)−1𝐴 . □



Appendix B
Concentration

B.1 Orlicz norms

Given a random variable 𝑋 and 𝑘 ∈ {1, 2} let

∥𝑋 ∥𝜓𝑘 = inf
{
𝑡 > 0 : E

[
exp

(
|𝑋/𝑡 |𝑘

)]
≤ 2

}
.

The random variable 𝑋 is called subgaussian if ∥𝑋 ∥𝜓2 < ∞ and subexponential
if ∥𝑋 ∥𝜓1 < ∞. As explained in detail by Vershynin (2018), this definition is
equivalent except for universal constants to the definitions based on moments
or the moment generating function, which appear, for example, in the book by
Boucheron et al. (2013). See also Proposition B.10.

Fact 1 For 𝑘 ∈ {1, 2}, ∥·∥𝜓𝑘 is a norm on the corresponding Orlicz space,
which is the subset of measurable functions 𝑓 such that ∥ 𝑓 ∥𝜓𝑘 < ∞ and where
functions that agree P-almost everywhere are identified. In particular:

(1) ∥𝑋 + 𝑌 ∥𝜓𝑘 ≤ ∥𝑋 ∥𝜓𝑘 + ∥𝑌 ∥𝜓𝑘 .
(2) ∥𝑎𝑋 ∥𝜓𝑘 = 𝑎 ∥𝑋 ∥𝜓𝑘 for all 𝑎 ≥ 0.
(3) ∥𝑋 ∥𝜓𝑘 = 0 implies that 𝑋 = 0 with probability 1.

Regrettably, the Orlicz norm of constant functions do not behave exactly as
you might expect:

∥1∥𝜓1 =
1

log(2) and ∥1∥𝜓2 =
1√︁

log(2)
. (B.1)

More generally, for bounded random variables:

Lemma B.2 Suppose that |𝑋 | ≤ 𝐵. Then

(1) ∥𝑋 ∥𝜓1 ≤
𝐵

log(2) .
(2) ∥𝑋 ∥𝜓2 ≤

𝐵√
log(2)

.

244
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Proof Substitute the definitions. □

Lemma B.3 Given any random variable 𝑋 and 𝑡 > 0,

(1) P( |𝑋 | ≥ 𝑡) ≤ 2 exp
(
− 𝑡

∥𝑋∥𝜓1

)
.

(2) P( |𝑋 | ≥ 𝑡) ≤ 2 exp
(
− 𝑡2

∥𝑋∥2
𝜓2

)
.

Proof Both results follow from a standard method. For (1),

P( |𝑋 | ≥ 𝑡) = P
(
exp

(
|𝑋 |

∥𝑋 ∥𝜓1

)
≥ exp

(
𝑡

∥𝑋 ∥𝜓1

))
≤ 2 exp

(
− 𝑡

∥𝑋 ∥𝜓1

)
. Markov’s inequality

Part (2) is left as an exer. □

Lemma B.4 Let Γ(·) be the Gamma function. Given any random variable 𝑋
and 𝑘 ≥ 1:

(1) E[|𝑋 |𝑘] ≤ 2Γ(1 + 𝑘) ∥𝑋 ∥𝑘𝜓1
.

(2) E[|𝑋 |𝑘] ≤ 2Γ(1 + 𝑘/2) ∥𝑋 ∥𝑘𝜓2
.

Proof Since |𝑋 | is non-negative,

E[|𝑋 |𝑘] =
∫ ∞

0
P( |𝑋 |𝑘 ≥ 𝑡) d𝑡

=

∫ ∞

0
P( |𝑋 | ≥ 𝑡1/𝑘) d𝑡

≤
∫ ∞

0
2 exp

(
− 𝑡1/𝑘

∥𝑋 ∥𝜓1

)
d𝑡

= 2Γ(1 + 𝑘) ∥𝑋 ∥𝑘𝜓1
.

Part (2) follows by the same argument. □

Lemma B.4 can be refined when 𝑘 = 1.

Lemma B.5 Given any random variable 𝑋:

(1) E[|𝑋 |] ≤ ∥𝑋 ∥𝜓1 .

(2) E[|𝑋 |] ≤
√︃

1
log(2) ∥𝑋 ∥𝜓2 .

Proof For (1) assume without loss of generality that ∥𝑋 ∥𝜓1 = 1. Using the
inequality 𝑥 ≤ exp(𝑥) − 1,

E[|𝑋 |] ≤ E[exp( |𝑋 |)] − 1 ≤ 1 .
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For (2) assume without loss of generality that ∥𝑋 ∥𝜓2 = 1. Then, by Proposi-
tion B.11 and (B.1),

E[|𝑋 |] ≤ ∥𝑋 ∥𝜓1 ≤ ∥𝑋 ∥𝜓2 ∥1∥𝜓2 =
1√︁

log(2)
≈ 1.2011 · · · . □

Lemma B.6 Given random variable 𝑋 ,

(1) ∥𝑋 − E[𝑋] ∥𝜓1 ≤ (1 + 1
log(2) ) ∥𝑋 ∥𝜓1 .

(2) ∥𝑋 − E[𝑋] ∥𝜓2 ≤ (1 + 1
log(2) ) ∥𝑋 ∥𝜓2 .

Proof By the triangle inequality (Fact 1),

∥𝑋 − E[𝑋] ∥𝜓1 ≤ ∥𝑋 ∥𝜓1 + ∥E[𝑋]∥𝜓1

≤ ∥𝑋 ∥𝜓1 +
1

log(2) |E[𝑋] | Lemma B.2

≤ ∥𝑋 ∥𝜓1 +
1

log(2)E[|𝑋 |] Jensen’s inequality

≤ ∥𝑋 ∥𝜓1 +
1

log(2) ∥𝑋 ∥𝜓1 . By Lemma B.5

Part (2) follows using the same argument. □

Lemma B.7 Suppose that 𝑋 is a non-negative random variable with E[𝑋] = 1.
Then E[𝑋 log 𝑋] ≤ logE[𝑋2].

Proof Let 𝜌 be the law of 𝑋 and define a measure 𝜈 by 𝜈(𝐴) = E[𝑋1𝐴(𝑋)],
which is a probability measure by the assumption that E[𝑋] = 1. By construction
d𝜈
d𝜌 (𝑥) = 𝑥 so that ∫

R
𝑥 log(𝑥) d𝜌(𝑥) =

∫
R

log(𝑥) d𝜈(𝑥)

≤ log
(∫

R
𝑥 d𝜈(𝑥)

)
= log

(∫
R
𝑥2 d𝜌(𝑥)

)
= logE[𝑋2] ,

where the inequality follows from concavity of the logarithm. □

Lemma B.8 Let log+ (𝑥) = log(max(1, 𝑥)). There exist absolute constants
(𝐶𝑘)∞𝑘=1 depending only on 𝑘 and with 𝐶1 = 1 such that for any non-negative
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random variables 𝑋 and 𝑌 with E[𝑋2] < ∞ and ∥𝑌1/𝑘 ∥𝜓1 < ∞ it holds that

E[𝑋𝑌 ] ≤ 𝐶𝑘E[𝑋] ∥𝑌1/𝑘 ∥𝑘𝜓1

(
1 +

(
log

E[𝑋2]
E[𝑋]2

) 𝑘)
𝐸 [𝑋𝑌 ] ≤ 𝐶𝑘 ∥𝑌1/𝑘 ∥𝑘𝜓1

(
E[𝑋] + E[𝑋]

(
log+

E[𝑋2]
𝜉2

) 𝑘
+ 𝜉

)
for all 𝜉 > 0 .

Proof Suppose that 𝑘 = 1. The result is immediate if E[𝑋] or E[𝑌 ] vanish.
Hence, by normalising it suffices to consider the case where E[𝑋] = 1 and
∥𝑌 ∥𝜓1 = 1. Let 𝑓 (𝑦) = exp(𝑦) which has convex conjugate 𝑓 ∗ (𝑥) = 𝑥 log 𝑥 − 𝑥.
By the Fenchel-Young inequality,

E[𝑋𝑌 ] ≤ E[ 𝑓 ∗ (𝑋) + 𝑓 (𝑌 )] Fenchel-Young
= E[𝑋 log 𝑋 + exp(𝑌 )] − 1
≤ E[𝑋 log 𝑋] + 1 since ∥𝑌 ∥𝜓1 = 1
≤ 1 + logE[𝑋2] . by Lemma B.7

The second part follows since

E[𝑋] log
(
E[𝑋2]
E[𝑋]2

)
= E[𝑋] log

(
E[𝑋2]
𝜉2

)
+ E[𝑋] log

(
𝜉2

E[𝑋]2

)
≤ E[𝑋] log

(
E[𝑋2]
𝜉2

)
+ 𝜉 ,

where the inequality follows because log(𝑥) ≤
√
𝑥 for all 𝑥 > 0. The argument

for 𝑘 > 1 follows from the same highlevel idea using the (non-convex) function
𝑓 (𝑦) = exp(𝑦1/𝑘) and is left as an exercise. □

Exercise B.9 ⋆ Prove Lemma B.8 with 𝑘 > 1.

The definition of subgaussianity based on moment generating functions is as
follows. Given a random variable 𝑋 , let 𝑀𝑋 (𝜆) = E[exp(𝜆𝑋)] be its moment
generating function. The set of subgaussian random variables with variance
proxy 𝜎2 is

𝒢(𝜎) = {𝑋 : 𝑀𝑋 (𝜆) ≤ exp(𝜎2𝜆2/2) for all 𝜆 ∈ R} .

The next proposition connects 𝒢(𝜎) to {𝑋 : E[𝑋] = 0, ∥𝑋 ∥𝜓2 ≤ 𝜎}. Similar
results with slightly larger constants are given by Boucheron et al. (2013);
Vershynin (2018); Zhang and Chen (2020).

Proposition B.10 Suppose that E[𝑋] = 0. Then

(1) If 𝑋 ∈ 𝒢(𝜎), then ∥𝑋 ∥𝜓2 ≤
√︁

8/3𝜎.
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(2) If ∥𝑋 ∥𝜓2 ≤ 𝜎, then 𝑋 ∈ 𝒢(
√

2𝜎).

Proof In both parts assume without loss of generality that 𝜎 = 1. For (1), let
𝑎 =

√︁
8/3. Then

E[exp((𝑋/𝑎)2)] = E
[

1
√
𝜋

∫ ∞

−∞
exp

(
−𝑡2 + 2𝑡𝑋

𝑎

)
d𝑡

]
=

1
√
𝜋

∫ ∞

−∞
E

[
exp

(
−𝑡2 + 2𝑡𝑋

𝑎

)]
d𝑡

≤ 1
√
𝜋

∫ ∞

−∞
exp

(
−𝑡2 + 2𝑡2

𝑎2

)
d𝑡

= 2 .

Therefore ∥𝑋 ∥𝜓2 ≤ 𝑎. Moving now to (2). Suppose that |𝜆 | ≤ 1. Then,

E[exp(𝜆𝑋)]
(a)

≤ E[exp(𝜆2𝑋2) + 𝜆𝑋]
(b)

≤ 𝜆2E[exp(𝑋2)] + 1 − 𝜆2

(c)

≤ 1 + 𝜆2

(d)

≤ exp(𝜆2) ,

where (a) follows from the fact that exp(𝑥) ≤ 𝑥 + exp(𝑥2) for all 𝑥 ∈ R, (b)
since E[𝑋] = 0 and by convexity of 𝜆2 ↦→ exp(𝑥2𝜆2), (c) since by assumption
E[exp(𝑋2)] ≤ 2 and (d) since 1 + 𝑥 ≤ exp(𝑥) for all 𝑥 ∈ R. On the other hand,
if |𝜆 | ≥ 1, then

E[exp(𝜆𝑋)] = E
[
exp

(
𝜆
√

2

√
2𝑋

)]
(a)

≤ E
[
exp

(
𝜆2

8
+ 𝑋2

)]
(b)

≤ 2 exp(𝜆2/8)
(c)

≤ exp(𝜆2) ,

where (a) follows from the Fenchel-Young inequality: 𝑥𝑦 ≤ 𝑥2/2 + 𝑦2/2 for
all 𝑥, 𝑦 ∈ R, (b) since E[exp(𝑋2)] ≤ 2 by assumption and (c) from the
assumption that |𝜆 | ≥ 1. □

Proposition B.11 (Lemma 2.7.7, Vershynin 2018) Let 𝑋 and𝑌 be any random
variables. Then ∥𝑋𝑌 ∥𝜓1 ≤ ∥𝑋 ∥𝜓2 ∥𝑌 ∥𝜓2 .

All the results in the next proposition can be found somewhere in the book by
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Vershynin (2018) but with non-explicit constants. The referenced paper gives
the explicit constant but is probably not the first to do so.

Proposition B.12 (Lattimore and György 2023) Suppose that𝑊 is a standard
Gaussian random variable in R𝑑 . Then:

(1) ∥⟨𝑥,𝑊⟩∥𝜓2 = 2
√︁

2/3 ∥𝑥∥.
(2) ∥tr(𝐴𝑊𝑊⊤)∥𝜓1 ≤ 3 tr(𝐴).
(3)



∥𝑊 ∥2


𝜓1

≤ 8𝑑/3.
(4) ∥∥𝑊𝑊⊤ − 1∥∥𝜓1 ≤ 5𝑑.

Lastly we give a bound on the Orlicz norm of ⟨𝑈, 𝜂⟩ where 𝑈 is uniformly
distributed on the sphere. Morally this is comparable to the case where 𝑈 is
N (0, 1

𝑑
1), as the bound shows.

Proposition B.13 Let 𝑋 = ⟨𝑈, 𝜂⟩ where 𝑈 has law U (S𝑑−1
1 ) and 𝜂 ∈ R𝑑 .

Then

∥𝑋 ∥𝜓2 ≤ ∥𝜂∥

√︄
4

3(𝑑 + 1) .

Proof Assume without loss of generality that ∥𝜂∥ = 1. Let𝑌 be beta distributed
with parameters 𝛼 = 𝛽 = 𝑑/2, which has mean 1/2. Then 𝑋/2 + 1/2 has the
same law as 𝑌 and Marchal and Arbel (2017) prove that for all 𝜆 ∈ R,

E[exp(𝜆(𝑌 − E[𝑌 ]))] ≤ exp
(
− 𝜆2

8(𝑑 + 1)

)
.

Therefore

E[exp(𝜆𝑋)] = E[exp((2𝜆) (𝑌 − E[𝑌 ]))] ≤ exp
(
− 𝜆2

4(𝑑 + 1)

)
= exp

(
−𝜆

2𝜎2

2

)
,

where 𝜎2 = 1
2(𝑑+1) . The result follows from Proposition B.10. □

B.2 Concentration

The following are classical:

Theorem B.14 (Duembgen 2010) Suppose that 𝑋 has law N (0, 1). Then, for
any 𝑥 ≥ 0,

P(𝑋 ≥ 𝑥) ≤ 1
2

exp
(
−𝑥

2

2

)
.
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Theorem B.15 (Boucheron et al. 2013, Theorem 5.6) Suppose that 𝑓 : R𝑑 → R
and 𝑋 has law N (𝜇, Σ). Then, for any 𝛿 ∈ (0, 1),

P
(
|E[ 𝑓 (𝑋)] − 𝑓 (𝑋) | ≥ lip( 𝑓 )

√︁
2 ∥Σ∥ log(2/𝛿)

)
≤ 𝛿 .

Furthermore, ∥ 𝑓 (𝑋) − E[ 𝑓 (𝑋)] ∥𝜓2 ≤ lip( 𝑓 )
√︁

6 ∥Σ∥.

The next two theorems are versions of Hoeffding’s and Bernstein’s inequalities
in terms of Orlicz norms. The constant 4 appearing in Hoeffding’s inequality
follows by combining the bound using the definition of subgaussianity based on
the moment generating function (Boucheron et al., 2013) and Proposition B.10.

Theorem B.16 (Hoeffding’s inequality) Let 𝑋1, . . . , 𝑋𝑛 be a sequence of
independent random variables with ∥𝑋𝑡 ∥𝜓2 ≤ 𝜎 and E[𝑋𝑡 ] = 0. Then, for any
𝛿 ∈ (0, 1),

P

(�����1𝑛 𝑛∑︁
𝑡=1

𝑋𝑡

����� ≥ 𝜎
√︂

4 log(2/𝛿)
𝑛

)
≤ 𝛿 .

Theorem B.17 (Bernstein’s inequality, Pinelis 2022) Let 𝑋1, . . . , 𝑋𝑛 be a
sequence of independent random variables with ∥𝑋𝑡 ∥𝜓1 ≤ 𝜎 and E[𝑋𝑡 ] = 0 for
all 1 ≤ 𝑡 ≤ 𝑛. Then, for any 𝛿 ∈ (0, 1),

P

(�����1𝑛 𝑛∑︁
𝑡=1

𝑋𝑡

����� ≥ max

(√︂
4𝜎2 log(2/𝛿)

𝑛
,

2𝜎 log(2/𝛿)
𝑛

))
≤ 𝛿 .

Theorem B.18 (Azuma’s inequality) Let 𝑋0, 𝑋1, . . . , 𝑋𝑛 be a martingale with
|𝑋𝑡 − 𝑋𝑡−1 | ≤ 𝑐𝑡 almost surely. Then, with probability at least 1 − 𝛿,

𝑋𝑛 ≤ 𝑋0 +

√√
2

𝑛∑︁
𝑡=1

𝑐2
𝑡 log(1/𝛿) .

The next theorem is a strengthened version of Freedman’s inequality due to
Zimmert and Lattimore (2022).

Theorem B.19 Let 𝑋1, . . . , 𝑋𝑛 be a sequence of random variables adapted
to filtration (ℱ𝑡 ) and 𝜏 be a stopping time with respect to (ℱ𝑡 )𝑛𝑡=1 with 𝜏 ≤ 𝑛
almost surely. Let E𝑡 [·] = E[·|ℱ𝑡 ] and assume that E𝑡−1 [𝑋𝑡 ] = 0 almost surely
for all 𝑡 ≤ 𝜏. Then, with probability at least 1 − 𝛿,����� 𝜏∑︁

𝑡=1
𝑋𝑡

����� ≤ 3

√︄
𝑉𝜏 log

(
2 max(𝐵,

√
𝑉𝜏)

𝛿

)
+ 2𝐵 log

(
2 max(𝐵,

√
𝑉𝜏)

𝛿

)
,
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where 𝑉𝜏 =
∑𝜏
𝑡=1 E𝑡−1 [𝑋2

𝑡 ] is the sum of the predictable variations and 𝐵 =

max(1,max1≤𝑡≤𝜏 |𝑋𝑡 |).

The next theorem is a folklore result. A version without stopping times
appears as Exercise 5.15 in the book by Lattimore and Szepesvári (2020).

Theorem B.20 Let 𝑋1, . . . , 𝑋𝑛 be a sequence of random variables adapted to
filtration (ℱ𝑡 )𝑛𝑡=1 and 𝜏 be a stopping time with respect to the same filtration.
Suppose that 𝛼 |𝑋𝑡 | ≤ 1 almost surely for all 𝑡 ≤ 𝜏 with 𝛼 ≥ 0. Then, with
probability at least 1 − 𝛿,

𝜏∑︁
𝑡=1

(𝑋𝑡 − E𝑡−1 [𝑋𝑡 ]) ≤ 𝛼
𝜏∑︁
𝑡=1

E𝑡−1 [𝑋2
𝑡 ] +

log(1/𝛿)
𝛼

,

where E𝑡 [·] = E[·|ℱ𝑡 ].

Proof Let Δ𝑡 = 𝑋𝑡 − E𝑡−1 [𝑋𝑡 ] and 𝑆𝜏 =
∑𝜏
𝑡=1 Δ𝑡 and 𝑉𝜏 =

∑𝜏
𝑡=1 E𝑡−1 [𝑋2

𝑡 ].
By Markov’s inequality,

P
(
𝑆𝜏 ≥ 𝛼𝑉𝜏 +

log(1/𝛿)
𝛼

)
= P

(
exp

(
𝛼𝑆𝜏 − 𝛼2𝑉𝜏

)
≥ 1
𝛿

)
≤ 𝛿E

[
exp

(
𝛼𝑆𝜏 − 𝛼2𝑉𝜏

)]
= 𝛿E [𝑀𝜏] ,

where 𝑀𝑡 = exp
(
𝛼𝑆𝑡 − 𝛼2𝑉𝑡

)
. Suppose that 𝑡 ≤ 𝜏. Then

E𝑡−1 [𝑀𝑡 ] = 𝑀𝑡−1E𝑡−1

[
exp

(
𝛼Δ𝑡 − 𝛼2E𝑡−1 [𝑋2

𝑡 ]
)]

= 𝑀𝑡−1 exp
(
−E𝑡−1 [𝛼2𝑋2

𝑡 + 𝛼𝑋𝑡 ]
)
E𝑡−1 [exp (𝛼𝑋𝑡 )]

≤ 𝑀𝑡−1 exp
(
−E𝑡−1 [𝛼2𝑋2

𝑡 + 𝛼𝑋𝑡 ]
)
E𝑡−1

[
1 + 𝛼𝑋𝑡 + 𝛼2𝑋2

𝑡

]
≤ 𝑀𝑡−1 .

where in the first inequality we used the fact that for |𝑥 | ≤ 1, exp(𝑥) ≤ 1+ 𝑥 + 𝑥2

and the last that 1 + 𝑥 ≤ exp(𝑥) for all 𝑥. Hence (𝑀𝑡 ) is a supermartingale and
𝑀0 = 1 is immediate from the definition. Since 𝜏 is almost surely bounded, by
the optional stopping theorem E[𝑀𝜏] ≤ 𝑀0 = 1. Therefore

P
(
𝑆𝜏 ≥ 𝛼𝑉𝜏 +

log(1/𝛿)
𝛼

)
≤ 𝛿 . □

The following is an elementary corollary of Theorem B.20.

Theorem B.21 Let 𝑋1, . . . , 𝑋𝑛 be a sequence of non-negative random variables
adapted to filtration (ℱ𝑡 )𝑛𝑡=1 and 𝜏 be a stopping time with respect to the same
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filtration. Suppose that 𝛼𝑋𝑡 ≤ 1 almost surely for all 𝑡 ≤ 𝜏 with 𝛼 ≥ 0. Then,
with probability at least 1 − 𝛿,

𝜏∑︁
𝑡=1

𝑋𝑡 ≤ 2
𝜏∑︁
𝑡=1

E𝑡−1 [𝑋𝑡 ] +
log(1/𝛿)

𝛼
,

where E𝑡 [·] = E[·|ℱ𝑡 ].

Proof Apply Theorem B.20 and bound 𝛼E𝑡−1 [𝑋2
𝑡 ] ≤ E𝑡−1 [𝑋𝑡 ]. □



Appendix C
Notation

𝐴+ 𝐵 Minkowski addition, 𝐴+ 𝐵 = {𝑎 + 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}

−𝐴 −𝐴 = {−𝑎 : 𝑎 ∈ 𝐴}

𝐴 − 𝐵 Minkowski subtraction, 𝐴 − 𝐵 = 𝐴+ (−𝐵)

𝑥 + 𝐴 abbreviation for {𝑥} + 𝐴

𝑢𝐴 Minkowski multiplication, 𝑢𝐴 = {𝑢𝑎 : 𝑎 ∈ 𝐴}, 𝑢 ∈ R

⊂, ⊃ subset/superset, possibly equal

⪰, ⪯, ≻, ≺ Loewner order operators

⌈ ·⌉, ⌊ ·⌋ ceiling/floor functions

𝑓 ∗ 𝑔 convolution of 𝑓 and 𝑔

⟨𝑥, 𝑦⟩ standard euclidean inner product

⟨𝑥, 𝑦⟩𝐴 inner product 𝑥⊤𝐴𝑦 for 𝐴 ∈ S𝑑++

R, Z reals, integers

R++, R+ (0,∞) and [0,∞)

S𝑑++, S𝑑+ positive definite and positive semi-definite matrices acting on R𝑑

B𝑑𝑟 euclidean ball of radius 𝑟 in R𝑑

S𝑑−1
𝑟 euclidean sphere of radius 𝑟 embedded in R𝑑

𝐸 (𝑥, 𝐴) the ellipsoid {𝑦 : ∥𝑥 − 𝑦 ∥𝐴−1 ≤ 1}

𝐻 (𝑥, 𝜂) the half-space {𝑦 : ⟨𝑦 − 𝑥, 𝜂⟩ ≤ 0}

[𝑥, 𝑦 ] convex chord {𝜆𝑥 + (1 − 𝜆)𝑦 : 𝑥 ∈ [0, 1] }
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ℬ(𝐾 ) Borel 𝜎-algebra on 𝐾

Δ(𝐾 ) probability measures on (𝐾,ℬ(𝐾 ) )

Δ𝑚 probability distribution on {1, . . . , 𝑚}

Δ+
𝑚 Δ𝑚 ∩ R𝑚++

𝒰(𝐴) uniform probability measure on 𝐴 ⊂ R𝑑

ℱ𝑡 natural filtration 𝜎 (𝑋1 , 𝑌1 , . . . , 𝑋𝑡 , 𝑌𝑡 ) p 10

P𝑡 conditional probability measure P( · |ℱ𝑡 ) p 10

E𝑡 conditional expectation E[ · |ℱ𝑡 ] p 10

∥ · ∥ euclidean/spectral norm of vector/matrix

∥ · ∥1 1-norm, ∥𝑥 ∥1 =
∑
𝑘 |𝑥𝑘 |

∥ · ∥∞ ∞-norm, ∥𝑥 ∥∞ = max𝑘 |𝑥𝑘 |

∥ · ∥𝜓𝑘 Orlicz norms, 𝑘 ∈ {1, 2} p 244

∥ · ∥𝐴 ∥𝑥 ∥𝐴 =
√
𝑥⊤𝐴𝑥 for positive semi-definite 𝐴

∥ · ∥𝐾 ∥ · ∥𝐾 = 𝜋𝐾 ( ·) when 𝐾 is a symmetric convex body p 25

𝐾 normally a convex set

𝐾◦ the polar of a convex set 𝐾 p 25

𝜋𝐾 Minkowski functional of 𝐾 , usually abbreviated to 𝜋 p 24

ℎ𝐾 support function of 𝐾 , usually abbreviated to ℎ p 25

int(𝐾 ) interior of 𝐾 p 9

ri(𝐾 ) relative interior of 𝐾 p 9

𝜕𝐾 boundary of 𝐾 p 9

diam(𝐾 ) diameter of 𝐾 , sup𝑥,𝑦∈𝐾 ∥𝑥 − 𝑦 ∥ p 27

vol(𝐾 ) volume of 𝐾

conv(𝐴) convex hull of 𝐴

𝑁 (𝐴, 𝐵) , 𝑁̄ (𝐴, 𝐵) external/internal covering numbers p 76

iso𝐾 affine map such that iso𝐾 (𝐾 ) is isotropic p 31

john𝐾 affine map such that john𝐾 (𝐾 ) is in John’s position p 38

sep𝐾 separation oracle for 𝐾 p 38

mem𝐾 membership oracle for 𝐾 p 38

𝑓 ′ / 𝑓 ′′ gradient/Hessian of 𝑓 : R𝑑 → R

𝜕 𝑓 (𝑥 ) subgradients of 𝑓 at 𝑥
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𝐷 𝑓 (𝑥 ) [𝑢] directional derivative of 𝑓 at 𝑥 in direction 𝑢

𝐷2 𝑓 (𝑥 ) [𝑢, 𝑣 ] second-order directional derivative in directions 𝑢, 𝑣

𝐷3 𝑓 (𝑘 ) [𝑢, 𝑣, 𝑤 ] third-order direction derivative in directions 𝑢, 𝑣, 𝑤

dom( 𝑓 ) domain of convex 𝑓 : R𝑑 → R ∪ {∞}, {𝑥 ∈ R𝑑 : 𝑓 (𝑥 ) = ∞}

lip𝐾 ( 𝑓 ) Lipschitz constant, sup
{
𝑓 (𝑥)− 𝑓 (𝑦)
∥𝑥−𝑦∥ : 𝑥, 𝑦 ∈ 𝐾, 𝑥 ≠ 𝑦

}
lip( 𝑓 ) lipdom( 𝑓 ) ( 𝑓 )

𝑓1 , . . . , 𝑓𝑛 convex/submodular loss functions in rounds 𝑡 ∈ 1 · · · 𝑛

𝜀1 , . . . , 𝜀𝑛 noise random variables p 5

𝑋1 , . . . , 𝑋𝑛 iterates played by algorithm p 4

𝑌1 , . . . , 𝑌𝑛 observed losses p 4

𝛼 and 𝛽 smoothness and strong convexity parameters p 4



Bibliography

Abernethy, J. D., Hazan, E., and Rakhlin, A. 2008. Competing in the Dark: An Efficient
Algorithm for Bandit Linear Optimization. Pages 263–274 of: Proceedings of the
21st Conference on Learning Theory. Omnipress.

Agarwal, A., Dekel, O., and Xiao, L. 2010. Optimal Algorithms for Online Convex
Optimization with Multi-Point Bandit Feedback. Pages 28–40 of: Conference on
Learning Theory.

Agarwal, A., Foster, D. P., Hsu, D. J., Kakade, S. M., and Rakhlin, A. 2011. Stochastic
convex optimization with bandit feedback. Pages 1035–1043 of: Advances in
Neural Information Processing Systems. Curran Associates, Inc.

Agarwal, A., Foster, D. P., Hsu, D., Kakade, S. M., and Rakhlin, A. 2013. Stochastic
Convex Optimization with Bandit Feedback. SIAM Journal on Optimization, 23(1),
213–240.

Akhavan, A., Pontil, M., and Tsybakov, A. 2020. Exploiting higher order smooth-
ness in derivative-free optimization and continuous bandits. Advances in neural
information processing systems, 33, 9017–9027.

Akhavan, A., Lounici, K., Pontil, M., and Tsybakov, A. 2024a. Contextual continuum
bandits: Static versus dynamic regret. arXiv preprint arXiv:2406.05714.

Akhavan, A., Chzhen, E., Pontil, M., and Tsybakov, A. 2024b. Gradient-free optimization
of highly smooth functions: improved analysis and a new algorithm. Journal of
Machine Learning Research, 25(370), 1–50.

Ao, R., Hu, H., and Simchi-Levi, D. 2025. Riemannian Online Convex Optimization
with Self-Concordant Barrier. Available at SSRN 5250625.

Artstein-Avidan, S., Giannopoulos, A., and Milman, V. D. 2015. Asymptotic geometric
analysis, Part I. Vol. 202. American Mathematical Soc.

Atkinson, D. S., and Vaidya, P. M. 1995. A cutting plane algorithm for convex
programming that uses analytic centers. Mathematical programming, 69(1), 1–43.

Bach, F. 2013. Learning with submodular functions: A convex optimization perspective.
Foundations and Trends® in machine learning, 6(2-3), 145–373.

Bach, F., and Perchet, V. 2016. Highly-smooth zero-th order online optimization. Pages
257–283 of: Conference on Learning Theory. PMLR.

Bachoc, F., Cesari, T., Colomboni, R., and Paudice, A. 2022a. A Near-Optimal
Algorithm for Univariate Zeroth-Order Budget Convex Optimization. arXiv
preprint arXiv:2208.06720.

256



Bibliography 257

Bachoc, F., Cesari, T., Colomboni, R., and Paudice, A. 2022b. Regret Analysis of Dyadic
Search. arXiv preprint arXiv:2209.00885.

Bakhtiari, A., Lattimore, T., and Szepesvári, Cs. 2025. Thompson Sampling for Bandit
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