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Abstract

We provide a simple and efficient algorithm for adversarial k-action d-outcome partial moni-
toring games. For non-degenerate locally observable games the n-round minimax regret is bounded
by 2mk3/2

√
3n log(k), matching the best known information-theoretic upper bound. The same

algorithm also achieves near-optimal regret for full information, bandit and globally observable
games. High probability bounds and simple experiments are also provided.

1 Introduction

Partial monitoring is a generalisation of the bandit framework that decouples the loss and the obser-
vations. The framework is sufficiently rich to model bandits, linear bandits, full information games,
dynamic pricing, bandits with graph feedback and many problems between and beyond these exam-
ples. For positive integer m let [m] = {1, . . . ,m}. A finite adversarial partial monitoring game is
determined by a signal matrix Φ ∈ Σk×d and loss matrix L ∈ [0, 1]k×d where Σ is an arbitrary finite
set. Both Φ and L are known to the learner. The game proceeds over n rounds. First the adver-
sary chooses a sequence (xt)

n
t=1 with xt ∈ [d]. In each round t ∈ [n] the learner chooses an action

At ∈ [k], suffers loss LAtxt , but only observes the signal σt = ΦAtxt . The regret is

Rn = max
a∈[k]

n∑
t=1

(LAtxt − Laxt) .

The minimax regret is

R∗n = inf
π

sup
(xt)nt=1

E [Rn] ,

where the expectation is with respect to the randomness in the actions and π is the policy of the learner
mapping action/observation sequences to distributions over the actions. Our main contribution is a
simple and efficient algorithm for finite non-degenerate locally observable partial monitoring games
for which

R∗n ≤ 2k3/2m
√

3n log(k) . (1)

The same algorithm is adaptive to other types of game, achieving near-optimal regret for globally
observable games, a regret of

√
2nk log(k) for bandits and

√
2n log(k) for full information games.
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Trivial R∗n = 0

Easy R∗n = Θ(n1/2)

Hard R∗n = Θ(n2/3)
Hopeless R∗n = Ω(n)

Table 1: Classification of finite partial moni-
toring

Related work Partial monitoring goes back to the work
by Rustichini [1999], who derived Hannan consistent
policies. There has been significant effort in understand-
ing the dependence of the regret on the horizon. The key
result is the classification theorem, showing that all fi-
nite partial monitoring games lie in one of four categories
as illustrated in Table 1. The classification theorem also
gives a procedure to decide into which category a given
game belongs. Since the game is known in advance, there is no need to learn the classification of
the game. This result has been pieced together over about a decade by a number of authors [Cesa-
Bianchi et al., 2006; Foster and Rakhlin, 2012; Antos et al., 2013; Bartók et al., 2014; Lattimore and
Szepesvári, 2019a]. Ironically, the ‘easy’ games present the greatest challenge for algorithm design
and analysis.

The best known bound for an efficient algorithm for ‘easy’ games is E[Rn] ≤ C(Φ,L)
√
n log(n),

where the constant C(Φ,L) can be arbitrarily large, even for fixed k and d [Foster and Rakhlin, 2012;
Lattimore and Szepesvári, 2019a]. Furthermore, the algorithms achieving this bound are complicated
to analyse and the proofs yield little insight into the structure of partial monitoring. Recently we
proved that for the ‘non-degenerate’ (defined later) subset of easy games, the minimax regret is at
most R∗n ≤ mk3/2

√
2n log(k) [Lattimore and Szepesvári, 2019b]. Unfortunately, however, our proof

non-constructively appealed to minimax duality and the Bayesian regret analysis techniques by Russo
and Van Roy [2016]. No algorithm was provided, a deficiency we now resolve.

Partial monitoring has been studied in a variety of contexts. For example, bandits with graph
feedback [Alon et al., 2015] and a linear feedback setting [Lin et al., 2014]. Some authors also consider
a variant of the regret that refines the notion of optimality in hopeless games [Rustichini, 1999; Mannor
and Shimkin, 2003; Perchet, 2011; Mannor et al., 2014]. Our focus is on the adversarial setting, but the
stochastic setup is also interesting and is better understood [Bartók et al., 2011; Vanchinathan et al.,
2014; Komiyama et al., 2015].

Approach Our algorithms are based on exponential weights with importance-weighted loss dif-
ference estimators [Freund and Schapire, 1997]. Crucially, the algorithms do not sample from the
distribution proposed by exponential weights. Instead, they solve a convex optimisation problem to
find a loss difference estimator and new distribution over actions for which the loss cannot be much
larger than the proposal distribution and the ‘stability’ term in the bound of exponential weights is
minimised. We then prove that the value of the optimisation problem appears in the resulting regret
guarantee and provide upper bounds for different classes of games. The most challenging aspect is to
prove the existence of a suitable exploration distribution for locally observable non-degenerate games,
which follows by combining a minimax theorem with insights from the Bayesian setting. The idea to
modify the distribution proposed by exponential weights is reminiscent of the work by McMahan and
Streeter [2009] for bandits with expert advice, though the situation here is rather different.

2 Notation and concepts

We write 0 and 1 for the column vectors of all zeros and all ones respectively. For a positive semidef-
inite matrix A and vector x, we let ‖x‖2A = x>Ax and diag(x) be the diagonal matrix with x on the
diagonal. We use ‖A‖∞ = maxij |Aij | for the (entrywise) maximum norm of A, which we also use
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for the special case that A is a vector. The minimum entry of a matrix is min(A) = minij Aij . The
standard basis vectors are e1, . . . , ed; we use the same symbols regardless of the dimension, which
should be clear from the context in all cases.

Root

a

In-trees An in-tree with vertex set [k] is a set T ⊆ [k]× [k] representing
the edges of a directed tree with vertices [k]. Furthermore, we assume
there is a root vertex denoted by rootT ∈ [k] such that for all a ∈ [k]
there is a directed path pathT (a) ⊆ T from a to the root. The path
from the root is the empty set: pathT (rootT ) = ∅. The figure depicts an
in-tree over k = 10 vertices. The blue (barred) path is pathT (a).

Partial monitoring Throughout we fix a partial monitoring game G =
(Φ,L) with loss matrix L ∈ [0, 1]k×d and signal matrix Φ ∈ Σk×d. Let
D = {ν ∈ [0, 1]d : ‖ν‖1 = 1} and P = {p ∈ [0, 1]k : ‖p‖1 = 1} be the probability simplices of
dimension d−1 and k−1 respectively. It is helpful to notice that if p ∈ P and ν ∈ D, then p>Lν is the
expected loss suffered by a learner sampling an action from p while the adversary samples its output
from ν. Given an action a ∈ [k] let Ca = {ν ∈ D : e>a Lν ≤ minb∈[k] e

>
b Lν} be the set of probability

vectors inD where action a is optimal to play in expectation if the adversary plays randomly according
to ν. We call Ca the cell of action a. Cells are convex polytopes because they are bounded and are
determined by finitely many non-strict linear constraints. The collection {Ca : a ∈ [k]}, illustrated in
Fig. 1, is called the cell decomposition.

Figure 1: Cell decompositions and neighbourhood graphs for two games with d = 3 and k = 5.

Remark 1. A generalisation of the framework allows (xt)
n
t=1 to be chosen in an arbitrary outcome

space X and L : [k] × X → [0, 1] and Φ : [k] × X → Σ are arbitrary functions. Our mathe-
matical results continue to hold in this case with d = |X |, but the proposed algorithms may not be
computationally efficient when |X | =∞. A short discussion of infinite games appears in Section 7.

Neighbourhood graph A key concept in partial monitoring is the neighbourhood relation, which
gives those pairs of potentially optimal actions that can be optimal simultaneously. An action a is
called Pareto optimal if dim(Ca) = d − 1 where the dimension of a polytope is defined as the di-
mension of its affine hull as an affine subspace. The set of Pareto optimal actions is denoted by
Π = {a : dim(Ca) = d − 1}. An action a with Ca 6= ∅ and dim(Ca) ≤ d − 2 is called degenerate
while actions with Ca = ∅ are dominated. Distinct actions a and b are duplicates if (ea − eb)>L = 0.
Pareto optimal actions a and b are neighbours if dim(Ca ∩ Cb) = d − 2. More informally, actions
are neighbours if their cells share a boundary of dimension d − 2. Note that dim(Ca ∩ Cb) = d − 1
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is only possible when a and b are duplicates. The neighbourhood relation defines a graph over [k].
We let E = {(a, b) : a and b are neighbours} be the set of edges in this graph. A game is called
non-degenerate if it has no degenerate actions. Of course, dim(D) = d − 1, so actions a with
dim(Ca) < d − 1 are optimal on a ‘negligible’ subset of D, where they cannot be uniquely opti-
mal. For the remainder we make the following simplifying assumption.

Assumption 2. G is globally observable, non-degenerate and contains no duplicate actions.

There is no particular reason to discard degenerate games except their analysis requires careful
handling of certain edge cases, as we discuss briefly in the discussion and extensively in other work
[Lattimore and Szepesvári, 2019a]. No modifications to the algorithm are required.

Observability The classification of a partial monitoring game depends on both the loss and signal
matrices. What is important to make a non-degenerate game ‘easy’ is that the learner should have
some way to estimate the loss differences between neighbouring actions by playing only those actions,
a property known as local observability. A game is globally observable if for all edges e = (a, b) ∈ E
in the neighbourhood graph there exists a function we : [k]× Σ→ R such that

Lax − Lbx =
k∑
c=1

we(c,Φcx) for all x ∈ [d] . (2)

A non-degenerate game is locally observable if Eq. (2) holds and additionally we can be chosen so
that we(c, σ) = 0 for all c /∈ {a, b} and all σ. Of course, all locally observable games are globally
observable.

Remark 3. The reader should be aware that for arbitrary (possibly degenerate) games the definition
of local observability is that there exist estimation vectors such that Eq. (2) holds and we(c, σ) = 0
unless e>c L = αe>a L+ (1−α)e>b L for some α ∈ [0, 1]. For non-degenerate games the definitions are
equivalent by [Bartók et al., 2014, Lemma 11].

The classification theorem we mentioned in the introduction says that

R∗n =


0 , if there is only one Pareto optimal action ;

Θ(n1/2) , if the game is locally observable ;

Θ(n2/3) , if the game is globally observable ;

Ω(n) , otherwise ,

where the Big-Oh notation hides game-dependent constants.

Estimation The following lemma and discussion afterwards shows that for globally observable
games Eq. (2) can be chained along paths in the neighbourhood graph to estimate the loss differences
between any pair of actions, not just neighbours. LetH be the set of all functions G : [k]× Σ→ Rk.

Lemma 4. If G is globally observable, then there exists a function G ∈ H such that for all b, c ∈ Π,

k∑
a=1

(G(a,Φax)b −G(a,Φax)c) = Lbx − Lcx .
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Proof. Let T ⊆ E be any in-tree over Π and for b ∈ Π let G(a, σ)b =
∑

e∈pathT (b)we(a, σ). Then

k∑
a=1

G(a,Φax)b =

k∑
a=1

∑
e∈pathT (b)

we(a,Φax) = Lbx − LrootT x .

The result follows by repeating the argument for c ∈ Π and taking the difference.

Given a distribution p ∈ P ∩ (0, 1)k and G satisfying the conclusion of Lemma 4, it follows that
if A is sampled from p and x ∈ [d] is arbitrary, then for actions a, b,

E
[

(ea − eb)>G(A,ΦAx)

pA

]
=

k∑
c=1

(ea − eb)>G(c,Φcx) = Lax − Lbx . (3)

In other words, the functionG can be used with importance-weighting to estimate the loss differences.
The set of functions that satisfy the consequences of Lemma 4 are denoted by

H◦ =

{
G : (eb − ec)>

k∑
a=1

G(a,Φax) = Lbx − Lcx for all b, c ∈ Π and x ∈ [d]

}
.

Bandit and full information games Bandit and full information games with finitely many possible
losses can be modelled by finite partial monitoring games, and serve as useful examples. Bandit games
are those with L = Φ and full information games have Φax = (L1x, . . . ,Lkx). Estimation functions
witnessing the conclusion of Lemma 4 are easily constructed. The obvious choice for bandit games
is G(a, σ) = eaσ while for full information games G(a, σ) = paσ where p ∈ P is any probability
distribution over the actions.

Exponential weights We briefly summarise a well-known bound on the regret of exponential weights.
For q ∈ P define Ψq : Rk → R by

Ψq(z) =
〈
q, exp(−z) + z − 1

〉
, (4)

where the exponential function is applied coordinate-wise. Suppose that (ŷt)
n
t=1 is an arbitrary se-

quence of (loss) vectors with ŷt ∈ Rk and (ηt)
n
t=1 is a non-increasing sequence of positive learning

rates. Define a sequence of probability vectors (qt)
n
t=1 by

qta =
exp

(
−ηt

∑t−1
s=1 ŷsa

)
∑k

b=1 exp
(
−ηt

∑t−1
s=1 ŷsb

) .
Then the following bound on the regret holds for any a∗ ∈ [k] [Lattimore and Szepesvári, 2019,
Chapter 28, for example],

n∑
t=1

k∑
a=1

qta(ŷta − ŷta∗) ≤
log(k)

ηn
+

n∑
t=1

Ψqt(ηtŷt)

ηt
. (5)
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Note, there is no randomness here. The term involving Ψ is sometimes called the stability term. The
following inequality is useful:

Ψq(ηy) ≤

{
η2 ‖y‖2diag(q) , if ηy ≥ −1 ;
1
2η

2 ‖y‖2diag(q) , if ηy ≥ 0 ,
(6)

which follows from the inequalities exp(−x) ≤ x2−x+1 for all x ≥ −1 and exp(−x) ≤ x2/2−x+1
for x ≥ 0. We will use the fact that the perspective (p, z) 7→ pΨq(z/p) is convex for p > 0.

3 Exploration by optimisation

Our algorithm is a combination of exponential weights and a careful exploration strategy. The follow-
ing example game, called costly matching pennies, is helpful to gain some intuition:

L =

0 1
1 0
c c

 and Φ =

⊥ ⊥
⊥ ⊥
H T

 .
1 23 (7)

The figure on the right is the neighbourhood graph when c = 1/4, which shows the first two actions
are separated by the third. The structure of the feedback matrix means that the learner only gains
information by playing the third action. Suppose that q ∈ P is a distribution with q3 close to zero
and both q1 and q2 reasonably large. Sampling an action from q leads to a low probability of gaining
information and a correspondingly high variance when estimating the difference between the losses
of the first and second actions. Consider the transformation of q defined by p = q−min(q1, q2)(e1 +
e2) + 2 min(q1, q2)e3, which is illustrated in Fig. 2. Then p3 ≥ q3 and

(p− q)>L = −1

2
min(q1, q2)1 . (8)

Hence, any algorithm proposing to play distribution q ∈ P with min(q1, q2) > 0 could improve its
decision by playing p, which decreases the expected loss and increases the amount of information.
Our new algorithm solves an optimisation problem to find a sampling distribution and estimation
function that minimise the sum of the loss relative to a distribution proposed by exponential weights
and the stability term in Eq. (5). In the example above the solution always results in a distribution
p with min(p1, p2) = 0. By contrast, previous algorithms for adversarial locally observable partial
monitoring games do not exhibit this behaviour [Foster and Rakhlin, 2012; Lattimore and Szepesvári,
2019a].

Optimisation problem Suppose that exponential weights proposes a distribution q ∈ P . Our algo-
rithm solves an optimisation problem to find an exploration distribution and estimation function that
determine the loss estimators. Given an estimation function G ∈ H and outcome x ∈ [d], define
a ‘bias’ function that measures the degree of bias when using importance-weighting to estimate loss
differences:

biasq(G;x) =

〈
q, Lex −

k∑
a=1

G(a,Φax)

〉
+ max

c∈Π

(
k∑
a=1

G(a,Φax)c − Lcx

)
.
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1 23 1 23

q p

Figure 2: An exploration distribution p derived from q for the game in Eq. (7). The expected loss when playing
p is smaller than playing q and simultaneously more information is gained because the third action is revealing.

As a function of G the bias is max-affine and hence convex. It is always non-negative and vanishes
when the estimation function G ∈ H◦ is unbiased. For q ∈ P and η > 0 let optq(η) be the value of
the following convex optimisation problem:

minimise
G∈H,p∈P

max
x∈[d]

[
(p− q)>Lex + biasq(G;x)

η
+

1

η2

k∑
a=1

paΨq

(
ηG(a,Φax)

pa

)]
. (9)

We assume that Eq. (9) can be solved exactly to obtain minimising values for G ∈ H and p ∈ P .
Our algorithm, however, is robust to small perturbations of these quantities. Numerical issues and a
practical approximation are discussed in Appendix F. Let

opt∗(η) = sup
q∈P

optq(η) .

Note that both optq(η) and opt∗(η) depend on G; this dependence is not shown to minimize clutter.
The optimisation problem can be formulated as an exponential cone problem and solved using off-
the-shelf solvers. The algorithm is a simple combination of exponential weights using the exploration
distribution and estimation function provided by solving Eq. (9).

input: η

for t = 1, . . . , n:

Compute Qta =
1Π(a) exp

(
−η
∑t−1

s=1 ŷsa

)
∑

b∈Π exp
(
−η
∑t−1

s=1 ŷsb

)
Solve (9) with q = Qt to find Pt ∈ P and Gt ∈ H

Sample At ∼ Pt, observe σt and compute ŷt =
Gt(At, σt)

PtAt

Algorithm 1: Exponential weights for partial monitoring with confidence
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The regret of Algorithm 1 depends on the learning rate and the value of the optimisation problem,
which depends on the structure of the game. Bounds on opt∗(η) are provided subsequently.

Theorem 5. For any η > 0, the regret of Algorithm 1 is bounded by E[Rn] ≤ log(k)

η
+ ηn opt∗(η).

Proof. Let a∗ = arg mina∈[k]

∑n
t=1 L(a, xt) be the optimal action in hindsight, where ties are broken

so that a∗ ∈ Π is Pareto optimal. Then

E[Rn] = E

[
n∑
t=1

k∑
b=1

Ptb(Lbxt − La∗xt)

]

≤ E

[
n∑
t=1

(
(Pt −Qt)>Lext + biasQt(Gt;xt)

)]
+ E

[
n∑
t=1

k∑
b=1

Qtb(ŷtb − ŷta∗)

]
. (10)

Next,

E

[
n∑
t=1

k∑
b=1

Qtb(ŷtb − ŷta∗)

]
≤ log(k)

η
+

1

η
E

[
n∑
t=1

ΨQt(ηŷt)

]
(11)

=
log(k)

η
+

1

η
E

[
n∑
t=1

k∑
a=1

PtaΨQt

(
ηGt(a,Φaxt)

Pta

)]
,

where Eq. (11) follows from Eq. (5) and the definitions of Qt and ŷt. The result follows by combining
Eq. (10) and the definition of opt∗(η).

Applications Table 2 provides bounds on opt∗(η) for different games and the regret bound that
results from optimising the learning rate. The proofs are provided in Sections 5 and 6. Except for
locally observable games, they mirror existing proofs bounding the stability of exponential weights.
In this way many other results could be added to this table, including bandits with graph feedback
[Alon et al., 2015] and linear bandits with finitely many arms [Bubeck et al., 2012].

Game type opt∗(η)
bound Conditions Ref. Regret

BANDIT k/2 Prop. 8
√

2nk log(k)

FULL INFORMATION 1/2 Prop. 9
√

2n log(k)

GLOBALLY OBSERVABLE cG/
√
η η ≤ 1/c2G Prop. 11 3(cGn/2)2/3(log(k))1/3

LOCALLY OBSERVABLE
NON-DEGENERATE

3k3m2 η ≤ 1/(mk2) Prop. 12 2k3/2m
√

3n log(k)

Table 2: Upper bounds on opt∗(η) and the regret of Algorithm 1 for different games. The constant cG is
game-dependent and can be exponentially large in d, which we believe is unavoidable.
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4 Online learning rate tuning

Tuning the learning rate used by Algorithm 1 is delicate. First, it is not clear that opt∗(η) can be
computed efficiently in general. Second, the learning rate that minimises the bound in Theorem 5 may
be overly conservative. Algorithm 2 mitigates these issues by using an adaptive learning rate. The
algorithm is parameterised by a constant B that determines the initialisation of the learning rate. B
should be chosen large enough that η = 1/B satisfies the conditions for the relevant game in Table 2,
but the additional regret from choosing B too large is only additive.

input: B

for t = 1, 2, . . . ,:

Set ηt = min

{
1

B
,

√
log(k)

1 +
∑t−1

s=1 Vs

}

Compute Qta =
1Π(a) exp

(
−ηt

∑t−1
s=1 ŷsa

)
∑

b∈Π exp
(
−ηt

∑t−1
s=1 ŷsb

)
Solve (9) with η = ηt and q = Qt to find Vt = max{0, optQt(ηt)} and

corresponding Pt and Gt

Sample At ∼ Pt, observe σt and compute ŷt =
Gt(At, σt)

PtAt

Algorithm 2: Adaptive exponential weights for partial monitoring

We now present a general theorem that bounds the regret as a function of (Vt)t, which is computed
by the algorithm. This theorem implies that Algorithm 2 recovers all regret bounds in Table 2 up to
small constant factors and additive terms.

Theorem 6. There exists a universal constant c > 0 such that the regret of Algorithm 2 is bounded by

E[Rn] ≤ 5E


√√√√(1 +

n∑
t=1

Vt

)
log(k)

+ E
[
max
t∈[n]

Vt

]√
log(k) +B log(k) .

A corollary using the definition of Vt is that the regret of Algorithm 2 is bounded by

E[Rn] = O
(√

n sup{max{0, opt∗(η)} : η ≤ 1/B} log(k) +B log(k)
)
. (12)

This bound is most useful for full information, bandit and locally observable non-degenerate games
when B can be chosen so that η1 ≤ 1/B satisfies the conditions in the second column of Table 2. As
a consequence, for games of this category Theorem 6 recovers the bounds in the last column Table 2
up to small constant factors and additive terms.

For games that are globally observable but not locally observable opt∗(η) → ∞ as η → 0 and
the supremum in Eq. (12) is infinite. Soon, we will argue that the learning rate used by Algorithm 2
does not decrease too fast and that the algorithm still achieves the regret bound shown in Table 2 for
globally observable games.
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Proof sketch of Theorem 6. We explain only the differences relative to the proof of Theorem 5. Recall
that Vt = max{0, optQt(ηt)}. Note, the learning rate ηt is non-increasing. Hence, by Eq. (5),

E[Rn] ≤ E

[
n∑
t=1

k∑
a=1

Qta(ŷta − ŷta∗) +
n∑
t=1

(Pt −Qt)>Lext + biasQt(Gt;xt)

]

≤ E

[
log(k)

ηn
+

n∑
t=1

ΨQt(ηtŷt)

ηt
+

n∑
t=1

(Pt −Qt)>Lext + biasQt(Gt;xt)

]
(13)

≤ E

[
log(k)

ηn
+

n∑
t=1

ηtVt

]
, (14)

where Eq. (14) follows from the same argument as the proof of Theorem 5 and the definition of Vt.
The second term is bounded using Lemma 22 in the appendix by

n∑
t=1

ηtVt ≤ 4

√√√√(1 +
1

2

n∑
t=1

Vt

)
log(k) + max

t∈[k]
Vt
√

log(k) .

The definition of (ηt)
n
t=1 means that

log(k)

ηn
≤ B log(k) +

√√√√(1 +
n∑
t=1

Vt

)
log(k) .

The bound follows by combining the parts and naive algebra.

As promised, we now show that for sufficiently large B the algorithm achieves the best known
regret for any globally observable game.

Proposition 7. Fix a globally observable game G. Suppose that α > 0 and opt∗(η) ≤ α/
√
η for all

η ≤ 1/B. Then, the regret of Algorithm 2 on G is at most

E[Rn] = O
(

(nα)2/3(log(k))1/3 +B log(k)
)
,

where the Big-Oh hides only universal constants.

Note that the conditions of this result will be satisfied with α = cG onceB ≥ c2
G with (cf. Table 2).

Proof. The result follows from Theorem 6 and an almost sure bound on
∑n

t=1 Vt. Clearly, ηt ≤ 1/B
and so by assumption Vt = max{0, optQt(ηt)} ≤ α/

√
ηt. Then, using the definition of (ηt)

n
t=1,

log(k)

η2
t+1

≤ log(k)

η2
t

+
α

η
1/2
t

=
log(k)

η2
t

+
α

log(k)1/4

(
log(k)

η2
t

) 1
4

.

Hence, using the definition of ηn and Lemma 23 in the appendix,

1 +
n∑
t=1

Vt ≤
log(k)

η2
n

≤
(

3α(n− 1)

4 log(k)1/4
+ max{1, B2 log(k)}3/4

)4/3

.

10



Substituting the above bound into the dominant term of Theorem 6 shows that√√√√(1 +
n∑
t=1

Vt

)
log(k) = O

(
(knα)2/3(log(k))1/3 +B log(k)

)
.

The result is completed by noting that maxt∈[n] Vt ≤ αη
−1/2
n is lower-order.

5 Bandit, full information and globally observable games

We now bound opt∗(η) for bandit, full information and globally observable games. All results fol-
low from the usual arguments for bounding the stability term in the regret guarantee for exponential
weights in Eq. (5).

Proposition 8. For bandit games, opt∗(η) ≤ k/2 for all η > 0.

Proof. Let q ∈ P be arbitrary and let p = q and G(a, σ) = eaσ. This corresponds to the usual
importance-weighted estimators used for k-armed bandits. Then

optq(η) ≤ max
x∈[d]

1

η2

k∑
a=1

paΨq

(
ηG(a,Φax)

pa

)
= max

x∈[d]

1

η2

k∑
a=1

paΨq

(
ηLaxea
pa

)
≤ 1

2
max
x∈[d]

k∑
a=1

L2
ax ≤

k

2
,

where in the second last inequality we used Eq. (6) and the fact that pa = qa.

Proposition 9. For full information games, opt∗(η) ≤ 1/2 for all η > 0.

Proof. As in the previous proof let p = q, but now choose G(a, σ) = paσ, which is unbiased. The
argument then follows along the same lines as the proof of Proposition 8.

Remark 10. You might wonder whether these choices of p and G actually minimise Eq. (9), in which
case the algorithm would reduce to Hedge for full information games. As we show in Appendix D,
however, they do not. The minimisers of Eq. (9) shift the loss estimates and play a distribution that is
close to q, but not exactly the same. A similar story holds for bandits.

Proposition 11. For non-degenerate globally observable games there exists a constant cG depending
only on Φ and L such that for all η ≤ 1/c2

G ,

opt∗(η) ≤ cG√
η
.

Proof. By the definition of a globally observable game there exists an unbiased estimation function
G ∈ H◦. Let β = ‖G‖∞ and cG = max{1, 2kβ}. Then let γ = kβ

√
η and p = (1 − γ)q + γ1/k,

which is a probability distribution since γ ∈ [0, 1] for η ≤ 1/c2
G . We claim that ηG(a,Φax)/pa ≥ −1,

which follows from the definitions of γ and β so that

pa1 ≥
γ

k
1 = β

√
η1 ≥ βη1 ≥ ηG(a,Φax) ,
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where the second inequality uses the fact that cG ≥ 1 and η ≤ 1/c2
G ≤ 1. To bound the objective

notice that for any x ∈ [d] it holds that

1

η
(p− q)>Lex =

γ

η
(1/k − q)>Lex ≤

γ

η
=
kβ
√
η
.

For the second term in the objective, by Eq. (6),

1

η2
max
x∈[d]

k∑
a=1

paΨq

(
ηG(a,Φax)

pa

)
≤ max

x∈[d]

k∑
a=1

‖G(a,Φax)‖2diag(q)

pa

≤ k

γ
max
x∈[d]

k∑
a=1

〈q,G(a,Φax)2〉

≤ k2β2

γ
=
kβ
√
η
.

The result follows by combining the previous two displays and the definition of cG .

6 Locally observable games

Controlling opt∗(η) for locally observable games is more involved. The main result of this section is
a proof of the following proposition.

Proposition 12. For locally observable non-degenerate games and η ≤ 1/(2mk2),

opt∗(η) ≤ 3m2k3 .

We make use of the water transfer operator, which is a construction from our earlier paper that
provides an exploration distribution suitable for locally observable games in the Bayesian setting. The
challenge in partial monitoring is that the observability structure only allows for pairwise comparison
between neighbours. This is problematic when two non-neighbouring actions are played with high
probability and the actions separating them are played with low probability. Given distributions q ∈ P
and ν ∈ D, the water transfer operator ‘flows’ probability in q towards the greedy action a for which
ν ∈ Ca. Then all loss differences can be estimated relative to the greedy action. This decreases
the variance of estimation without increasing the expected loss when the adversary samples its action
from ν.

Lemma 13 (Lattimore and Szepesvári 2019b). Suppose that G is non-degenerate and locally observ-
able and ν ∈ D. Then there exists a function Wν : P → P such that the following hold for all
q ∈ P:

(a) The expected loss does not increase: (Wν(q)− q)> Lν ≤ 0.

(b) Action probabilities are not too small: Wν(q)a ≥ qa/k for all a ∈ [k].

(c) Probabilities increase towards the root of some in-tree: there exists an in-tree T ⊆ E over [k]
such that Wν(q)a ≤Wν(q)b for all (a, b) ∈ T .

A simplified proof of the above lemma is provided for completeness in Appendix B.

12



Proof of Proposition 12. Let q ∈ P . By Sion’s minimax theorem

optq(η) ≤ min
G∈H◦,p∈P

max
ν∈D

[
1

η
(p− q)>Lν +

1

η2

d∑
x=1

νx

k∑
a=1

paΨq

(
ηG(a,Φax)

pa

)]

= max
ν∈D

min
G∈H◦,p∈P

[
1

η
(p− q)>Lν +

1

η2

d∑
x=1

νx

k∑
a=1

paΨq

(
ηG(a,Φax)

pa

)]
,

where in the first inequality we added the constraint that G ∈ H◦, which zeros the bias term. Let
ν ∈ D and let T and r = Wν(q) be the in-tree over [k] and distribution in P provided by the water
transfer operator (Lemma 13). Define G ∈ H by

G(a, σ)b =
∑

e∈pathT (b)

we(a, σ) .

By Lemma 20 and the assumption that G is non-degenerate, we can be chosen so that ‖we‖∞ ≤ m/2.
Since paths in T have length at most k it follows that

‖G‖∞ ≤ km/2 .

Furthermore, G ∈ H◦ by the proof of Lemma 4. Then let γ = ηmk2/2 and p = (1 − γ)r + γ1/k,
which means that for any x ∈ [d],

ηG(a,Φax)

pa
≥ −ηmk

2

2γ
= −1 .

Additionally, the assumption that η ≤ 1/(mk2) means that γ ≤ 1/2 so that r ≥ p/2. Hence, by
Eq. (6) and using Parts (b) and (c) of Lemma 13 with the definition of r,

1

η2

k∑
a=1

paΨq

(
ηG(a,Φax)

pa

)
≤

k∑
a=1

‖G(a,Φax)‖2diag(q)

pa

≤ 2
k∑
a=1

‖G(a,Φax)‖2diag(q)

ra

= 2
k∑
b=1

k∑
a=1

qb
ra

 ∑
e∈pathT (b)

we(a,Φax)

2

≤ m2

2

k∑
b=1

k∑
a=1

qb
ra

 ∑
e∈pathT (b)

1(a ∈ e)

2

≤ 2k3m2 ,

where we used Part (b) of Lemma 13 to show that qb ≤ krb and Part (c) to show that ra ≥ rb for
a ∈ pathT (b). Finally,

1

η
(p− q)>Lν =

1

η
(r − q)>Lν +

γ

η
(1/k − r)>Lν ≤ γ

η
(1/k − r)>Lν ≤ γ

γ
= mk2 ≤ k3m2 .

Hence optq(η) ≤ 3k3m2.

Remark 14. The bound can be improved to optq(η) ≤ 3km2 diam(E)2, where diam(E) is the diam-
eter of the neighbourhood graph.
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7 Discussion

We introduced a new algorithm for finite partial monitoring that is efficient, nearly parameter free
and enjoys roughly the best known regret in all classes of games. Notably, this is the first efficient
algorithm for which the regret is independent of arbitrarily large game-dependent constants for locally
observable non-degenerate games. A natural criticism of previous algorithms for partial monitoring is
that the algorithms are generally quite conservative and not practical for normal problems. As far as we
can tell, the proposed algorithm does not suffer from this problem, at least recovering standard bounds
in bandit and full information settings. In certain cases the algorithm may also adapt to the choices of
the adversary. The principle for finding an exploration distribution and estimation procedure is generic
and may work well in other problems.

Lower bounds The best known lower bound for locally observable partial monitoring games is ei-
ther Ω(

√
kn) or Ω(d

√
n), which are witnessed by a standard Bernoulli bandit [Auer et al., 1995] and a

result by the authors [Lattimore and Szepesvári, 2019a]. If pressed, we would speculate that Θ(d
√
kn)

is the correct worst-case regret over all d-outcome k-action non-degenerate locally observable partial
monitoring games, at least as n tends to infinity.

High probability bounds By replacing the bias term in Eq. (9) with a constraint on a certain
moment-generating function the algorithm can be adapted to prove high probability bounds. Details
are provided in Appendix A.

Infinite outcome spaces Finiteness of the outcome space was not used in the proofs of Theorem 5
or Theorem 6 and in particular the results in Table 2 continue to hold in this case The main cost of
infinite outcome spaces is that the optimisation problem Eq. (9) is unlikely to be tractable without
additional structure. Classic examples of infinite games for which the regret can be well controlled
are bandit and full information games. In both games the outcomes (xt)

n
t=1 are chosen in X = [0, 1]k

and L(a, x) = xa (using the notation of Remark 1). The signal function is Φ(a, x) = xa for bandits
and Φ(a, x) = x for the full information games. Exploring the existence of a simple classification
theorem for infinite-outcome games is an interesting future direction. Understanding when Eq. (9) is
tractable is also intriguing.

Game-dependent bounds One of the objectives of this work was to design an efficient algorithm
for which the regret does not depend on arbitrarily large game-dependent constants. Naturally it is de-
sirable to have small game-dependent constants and adaptivity to the choices of the adversary. Table 2
provides upper bounds on opt∗(η) for various classes, but the actual values depends on the game.
Understanding the dependence of this optimisation problem on the structure of the loss and signal
matrices is an interesting open direction. Also interesting is whether or not opt∗(η) is a fundamental
quantity for the difficulty of the game and/or the regret of our algorithms.

Adaptivity Algorithm 2 already exhibits some adaptivity in the lucky situation that Vt is small. This
is not entirely satisfactory, however, since Vt is a random variable that depends on the choices of
both the learner and the adversary. We anticipate that all the usual enhancements for adaptivity – log
barrier, biased estimates and optimism – can be applied here [Rakhlin and Sridharan, 2013; Bubeck
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et al., 2018; Wei and Luo, 2018; Bubeck et al., 2019, for example]. A related challenge would be to
seek a best-of-both-worlds result, perhaps using the INF potential [Zimmert et al., 2019].

Beyond exponential weights The objective in Eq. (9) is chosen so that the terms in Eq. (11) are
well controlled, which corresponds to bounding the stability term in the regret analysis of exponential
weights. Other algorithms can be obtained by replacing exponential weights with follow the regu-
larized leader and Legendre potential F . A standard regret bound (holding under certain technical
conditions) is

E[Rn] ≤ diamF (P)

η
+

1

η
E

[
n∑
t=1

k∑
a=1

PtaDF ∗

(
∇F (Qt)−

ηGt(a,Φaxt)

Pta
,∇F (Qt)

)]
(15)

+ E

[
n∑
t=1

(Pt −Qt)>Lext + biasQt(Gt;xt)

]
.

where diamF (P) = maxx,y∈P F (x)−F (y) is the diameter andDF ∗(x, y) is the Bregman divergence
between x and y with respect to the Fenchel conjugate of F . Let

Ψq(z) = DF ∗(∇F (q)− z,∇F (q)) .

Then convexity of F ∗ implies that the perspective (p, z) 7→ pΨq(z/p) is also convex for p > 0.
When F is the unnormalised negentropy, the definition above reduces to Eq. (4). All this means that
the same approach holds more broadly for other potentials, which carry certain advantages in some
settings [Audibert and Bubeck, 2009; Bubeck et al., 2018; Wei and Luo, 2018; Bubeck et al., 2019,
and others]. For more details on follow the regularised leader and bounds of the form in Eq. (15), see
[Lattimore and Szepesvári, 2019, Chapter 28] and [Hazan, 2016]. We leave a deeper exploration of
these ideas for the future.

Degenerate games The non-degeneracy assumption is purely for simplicity. Only the proof of
Proposition 12 and its dependents need to be modified in minor ways. The notable difference is
that the magnitude of the estimation vectors is no longer guaranteed to be small. More specifically,
Lemma 20 does not hold when estimating loss differences between actions (a, b) for which there are
degenerate actions c with Cc = Ca ∩ Cb. As in our previous work, using Proposition 21 instead
introduces constants that may be exponential in d, which we believe is unavoidable [Lattimore and
Szepesvári, 2019b]. Duplicate actions can be handled similarly and have the same affect.

Connections between stability and the information ratio Zimmert and Lattimore [2019] have
shown that the generalised information ratio can be bounded by a worst-case bound on the stability
term of mirror descent, which makes a connection between the information-theoretic tools and those
from online convex optimisation. Here we work in the other direction, using duality and the techniques
for bounding the information ratio to bound the stability term. The argument does not provide an
equivalence between stability and the information ratio, but perhaps reinforces the feeling that there is
an interesting connection here.

Acknowledgements We are grateful to András György for many insightful comments.
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A High probability bounds

The same design principle can be used to construct algorithms for which the regret is controlled with
high probability. The idea is to replace the constraint in the optimisation problem that the estimators
are unbiased with constraints on the range of the loss estimators and on an appropriately chosen
moment-generating function. Given q ∈ P and η > 0, let opthpq(η) be the solution to the following
optimisation problem:

minimise
G∈H,p∈P, λ≥0

λ+
2

η2
max
x∈[d]

k∑
a=1

paΨq

(
ηG(a,Φax)

pa

)

subject to
k∑
a=1

pa exp

(
η

(
Lax − Lcx −

〈q − ec, G(a,Φax)〉
pa

))
≤ exp(λη2)

and η ‖G(a, σ)‖∞ ≤ pa for all a and σ .

(16)
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The optimisation problem in Eq. (16) is not convex, but the solution can be approximated effi-
ciently within a factor of two. Let opthpq(η, λ) be the optimal value of Eq. (16) with a fixed value of
λ, which is convex. A larger value of λ leads to a larger constraint set and hence λ 7→ opthpq(η, λ)−λ
is decreasing. Then the bisection method can be used to find (approximately) the value of λ such that
opthpq(η, λ) = 2λ and you can check that for this choice opthpq(η, λ) ≤ 2 opthpq(η). We also
define

opthp∗(η) = sup
q∈P

opthpq(η) .

The algorithm is exactly the same as Algorithm 1 except that the optimisation problem in Eq. (16) is
used instead of Eq. (9).

input: η

for t = 1, . . . , n:

Compute Qta =
1Π(a) exp

(
−η
∑t−1

s=1 ŷsa

)
∑

b∈Π exp
(
−η
∑t−1

s=1 ŷsb

)
Solve (16) with q = Qt to find λt ∈ R and Pt ∈ P and Gt ∈ H

Sample At ∼ Pt and observe σt

Compute ŷt =
Gt(At, σt)

PtAt

Algorithm 3: Exponential weights for partial monitoring

Theorem 15. With probability at least 1− 2δ the regret of Algorithm 3 is bounded by

Rn ≤
log(k) + 2 log(1/δ)

η
+ ηn opthp∗(η) .

Proof. Let (λt)
n
t=1 be the sequence of real values as defined in the algorithm. Using Lemma 26, the

regret is bounded with probability at least 1− δ by

Rn =

n∑
t=1

(LAtxt − La∗xt) ≤
log(1/δ)

η
+ η

n∑
t=1

λt +

n∑
t=1

k∑
b=1

Qtb (ŷtb − ŷta∗) .

The second sum is bounded as in the proof of Theorem 5 using Eq. (5) by

n∑
t=1

k∑
b=1

Qtb (ŷtb − ŷta∗) ≤
log(k)

η
+

1

η

n∑
t=1

Ψq (ηŷt) .

Let Et−1[·] denote the expectation conditioned on the history observed after t − 1 rounds. The last
constraint in Eq. (16) ensure that |ηŷt| ≤ 1. Therefore Ψq(ηŷt) ∈ [0, 1] and

Et−1

[
exp

(
ΨQt(ηŷt)− Et−1[ΨQt(ηŷt)]

)]
≤ 1 + Et−1

[
(ΨQt(ηŷt))

2
]
≤ exp (Et−1 [ΨQt(ηŷt)]) ,
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where we used that exp(x) ≤ 1 + x + x2 for x ≤ 1 and that E[X2] ≤ E[X] for random variables
X ∈ [0, 1]. Hence, another application of Lemma 26 shows that with probability at least 1− δ,

1

η

n∑
t=1

ΨQt (ηŷt) ≤
2

η

n∑
t=1

Et−1 [ΨQt (ηŷt)] +
1

η
log

(
1

δ

)

≤ η
n∑
t=1

(
opthpQt(η)− λt

)
+

1

η
log

(
1

δ

)
.

Combining the pieces shows that the regret is bounded with probability at least 1− 2δ by

Rn ≤
log(k) + 2 log(1/δ)

η
+ η

n∑
t=1

opthpQt(η) ≤ log(k) + 2 log(1/δ)

η
+ ηn opthp∗(η) .

Remark 16. Algorithm 3 can be modified with a little effort to adapt the learning rate in a similar
manner as Algorithm 2. The analysis remains more-or-less the same except a version of Lemma 26
must be proven for decreasing sequences of learning rates.

Applications Like optq(η), the quantity opthpq(η) is game-dependent. In all the applications that
we know of the stability component of the optimisation problem in Eq. (9) can be bounding by choos-
ing p and G so that the loss estimators do not have magnitude larger than 1/η and then using the
bounds on Ψq in Eq. (6). The following lemma extracts the core assumptions needed for this argu-
ment. Afterwards we give applications for full information, bandit and partial monitoring games.

Lemma 17. Let q ∈ P and η ∈ (0, 1/2) and suppose there exists a p ∈ P and G ∈ H◦ and
ϕ ∈ [0,∞)k such that for all actions a and b and outcomes x,∣∣∣∣ηG(a,Φax)b

pa

∣∣∣∣ ≤ 1

2
and

k∑
a=1

G(a,Φax)2
b

pa
≤ ϕb and η2ϕb ≤

1

2
. (17)

Then opthpq(η/2) ≤ 3〈q, ϕ〉+ 1
η maxx∈[d](p− q)>Lex.

Proof. Let λ = 2〈q, λ〉 and G′ be given by G′(a, σ) = G(a, σ) − ηpaϕ. At heart this is the same
biased loss estimator used by Auer et al. [1995] and generalised by Abernethy and Rakhlin [2009]. We
now get to work bounding the moment generating functions that appear in the constraint of Eq. (16).
For any action c,

k∑
a=1

pa exp

(
η

(
G′(a,Φax)c

pa
− Lcx

))
=

k∑
a=1

pa exp

(
η

(
G(a,Φax)c

pa
− Lcx − ηϕb

))
≤
(
1 + ϕbη

2 + ηLcx
)

exp
(
−ηLcx − ϕbη2

)
≤ 1 ,

where we used the inequality exp(x) ≤ 1 + x + x2 for x ≤ 1 and the conditions of the lemma and
then the fact that 1 + x ≤ exp(x). Similarly, using exp(x) ≤ 1 + x + x2 and the first and second
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conditions in Eq. (17),

k∑
a=1

pa exp

(
η

(
Lax −

〈q,G′(a,Φax)〉
pa

))

=
k∑
a=1

pa exp

(
η

(
Lax −

〈q,G(a,Φax)〉
pa

+ η〈q, ϕ〉
))

≤

(
1 + η(p− q)>Lex + η2

k∑
a=1

pa

(
Lax −

〈q,G(a,Φax)〉
pa

)2
)

exp
(
η2〈q, ϕ〉

)
≤ exp

(
η(p− q)>Lex + 2η2〈q, ϕ〉

)
.

Combining the previous two displays and the inequality exp(η(x+ y)/2) ≤ exp(ηx)/2 + exp(ηy)/2
shows that

k∑
a=1

pa exp

(
η

2

(
Lax − Lcx −

k∑
b=1

〈q − ec, G(a,Φax)〉
pa

))
≤ exp

(
2η2〈q, ϕ〉

)
.

The second part of the objective is bounded using the same idea:

k∑
a=1

paΨq

(
ηG′(a,Φax)

2pa

)
=

k∑
a=1

pa

〈
q, exp

(
−ηG(a,Φax)

2pa
+
η2ϕ

2

)
− 1 +

ηG(a,Φax)

2pa
− η2ϕ

2

〉

≤ 1

4

k∑
a=1

pa

k∑
b=1

qb

(
−ηG(a,Φax)b

pa
+
η2ϕb

2

)2

≤ η2〈q, ϕ〉
2

+
η2

2

k∑
b=1

qbη
2ϕ2

b

≤ η2〈q, ϕ〉 ,

where in the first inequality we again used that exp(x) ≤ 1 + x+ x2 for x ≤ 1 and the first and third
conditions in Eq. (17). In the second inequality we used that (x + y)2 ≤ 2x2 + 2y2 and finally we
used the assumption that η2ϕb ≤ 1. Finally, by the first and third conditions in Eq. (17),

η
∥∥G′(a,Φax)

∥∥
∞ = η ‖G(a,Φax)− ηpaϕ‖∞ ≤ η ‖G(a,Φax)‖∞ + paη

2 ‖ϕ‖∞ ≤ pa .

Hence, optq(η/2) ≤ 3〈q, ϕ〉+ 1
η maxx∈[d](p− q)>Lex.

Using the same analysis as in the proofs of Propositions 8, 9, 11 and 12 you can prove all the
bounds in Table 3. For example, Lemma 17 can be applied to full information games by defining
G(a, σ) = paσ and p = q and ϕ = 1. Then 〈q, ϕ〉 = 1 and for η ≤ 1/2 it follows that opthp∗(η) ≤ 3.
And hence the familiar bound of O(

√
n log(k/δ)) is recovered using Theorem 15.

Remark 18. The bounds in Table 3 are obtained by tuning the learning rate in a manner that depends
on δ. The learning rate can be tuned without the knowledge of δ, but then the dependence on log(1/δ)
moves outside the square root, a price that is known to be unavoidable [Gerchinovitz and Lattimore,
2016].
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Game type Regret

FULL INFORMATION O
(√

n log(k/δ)
)

BANDIT O
(√

nk log(k/δ)
)

GLOBALLY OBSERVABLE O
(
(cGn)2/3 log(k/δ)1/3

)
LOCALLY OBSERVABLE
NON-DEGENERATE

O
(
mk3/2

√
n log(k/δ)

)

Table 3: High probability regret upper bounds that hold for a given δ ∈ (0, 1). The constant cG is game-
dependent and can be exponentially large in d, which we believe is unavoidable.

B Water transfer operator

Here we provide a simple proof of Lemma 13. Let T be an in-tree over [k]. A vector y ∈ Rk is called
T -increasing if ya ≤ yb for all (a, b) ∈ T , which means the function a 7→ ya is increasing towards
the root of T . Similarly, y is T -decreasing if ya ≥ yb for all (a, b) ∈ T .

Lemma 19. Given a tree T over [k] and q ∈ P , there exists an r ∈ P such that:

(a) r ≥ q/k.

(b) r is T -increasing.

(c) 〈r − q, y〉 ≤ 0 for all T -decreasing y ∈ Rk.

Proof. Let descT (a) be the descendants of a in T with the convention that a ∈ descT (a). Define
dT (a) as the depth of a in T with dT (rootT ) = 1. Define ra =

∑
b∈descT (a) qb/dT (b), which is

illustrated in Fig. 3. That r ∈ P follows since

k∑
a=1

∑
b∈descT (a)

qb
dT (b)

=
k∑
b=1

qb
dT (b)

k∑
a=1

1(b ∈ descT (a)) =
k∑
b=1

qb = 1 .

Part (a) follows because dT (b) ≤ k. Part (b) follows because if (a, b) ∈ T , then descT (a) ⊂
descT (b). For the last part, the fact that y is T -decreasing means that

〈r, y〉 =
k∑
a=1

ya
∑

b∈descT (a)

qb
dT (b)

≤
k∑
a=1

∑
b∈descT (a)

ybqb
dT (b)

=
k∑
b=1

ybqb
dT (b)

k∑
a=1

1(b ∈ descT (a)) = 〈q, y〉 .

Rearranging completes the proof.

Proof of Lemma 13. The result follows from Lemma 19 and by proving there exists an in-tree T over
[k] such that Lν is T -decreasing. We start by proving the existence of T when ν ∈ ri(Ca∗ν ) for some
Parent optimal action a∗ν . Define a function par : [k]→ [k] by

par(a) = arg min
b:(a,b)∈E

e>b Lν ,
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Figure 3: Illustration of r as defined in the proof of Lemma 13.

where the ties in the arg min are broken arbitrarily. We will shortly show that (ea − epar(a))
>Lν > 0

for all a 6= a∗ν , which means that T = {(a,par(a)) : a 6= a∗ν} is an in-tree over [k] on which L>ν is
T -decreasing. Let D = {(a, b, c) : dim(Ca ∩ Cb ∩ Cc) ≤ d− 3} and

A =
⋃

a,b,c∈D
Ca ∩ Cb ∩ Cc .

Let a 6= a∗ν and µ ∈ ri(Ca) be such that the chord connecting µ and ν does not intersect A. Next,
let ρ ∈ ∂Ca be such that ρ − µ is proportional to ν − µ and b 6= a be an action with ρ ∈ Cb.
Since µ ∈ ri(Ca) we have e>a Lµ < e>b Lµ and since ρ ∈ Ca ∩ Cb we have e>a Lρ = e>b Lρ. Hence
e>b Lν < e>a Lν. The choice of µ ensures that ρ /∈ A and hence (a, b) ∈ E , which means that
par(a) is well defined and satisfies the claimed monotonicity conditions. Suppose now that ν is
arbitrary and a∗ν ∈ Cν . Then take a sequence (νt)

∞
t=1 converging to ν and with νt ∈ ri(a∗ν). By the

previous argument there exists a sequence of in-trees (Tt)∞t=1 such that Lνt is Tt-decreasing. Since
the space of trees is finite, the sequence (Tt)∞t=1 has a cluster point T and it is easy to see that Lν is
T -decreasing.

C Bounds on the estimation functions

The polynomial dependence on k and m in locally observable non-degenerate games follows from the
simple combinatorial structure when loss differences are estimated by playing two actions only. We
provide the following lemma, which strengthens slightly our previous result [Lattimore and Szepesvári,
2019a].

Lemma 20. If G = (Φ,L) is locally observable and non-degenerate and actions (a, b) ∈ E are
neighbours, then there exist functions wa, wb : Σ→ R such that ‖wa‖∞ ≤ m/2 and ‖wb‖∞ ≤ m/2
and

Lax − Lbx = wa(Φax) + wb(Φbx) for all x ∈ [d] . (18)

Proof of Lemma 20. By the definition of local observability and non-degeneracy there exists wa, wb
satisfying Eq. (18). Consider the bipartite graph over V = {(a, 1), . . . , (a,m), (b, 1), . . . , (b,m)} and
edges between vertices (a, σ) and (b, σ′) if there exists an x ∈ [d] such that Φax = σ and Φbx = σ′.
Define a function f : V → R by f((a, σ)) = wa(σ) and f((b, σ)) = wb(σ). Since entries in the loss
matrix are bounded in [0, 1] it holds that f(w) + f(v) ∈ [0, 1] for all edges (w, v). The result follows
from Lemma 25.

23



For degenerate games the learner may need more than two actions to produce unbiased loss es-
timates, which unfortunately introduces the potential for an unpleasant combinatorial structure that
makes learning much harder. Nevertheless, the norm of the estimation vectors can be uniformly
bounded in terms of d and k.

Proposition 21. Suppose that (L,Φ) is globally observable and a and b are neighbours. Then there
exists a function w : [k]× Σ→ R such that for all x ∈ [d],

k∑
c=1

w(c,Φcx) = Lax − Lbx .

Furthermore, w can be chosen so that ‖w‖∞ ≤ d1/2kd/2.

Proof. For action a, let Sa ∈ {0, 1}|Σ|×d be the matrix with (Sa)σx = 1(Φax = σ), which means
that Saex = eΦax . Here we have abused notation by indexing the rows of Sa using signals. Let
S = (S>1 , . . . , S

>
k ), which means that S ∈ Rd×mk. Then let y = (ea−eb)>L ∈ [−1, 1]k. We identify

w with a vector in Rkm. By the assumption of global observability there exists a w ∈ Rkm such that
Sw = y. Hence we may take w = S+y with S+ the Moore-Penrose pseudo-inverse and for which

‖w‖∞ ≤ ‖w‖2 ≤ ‖S
+‖2 ‖y‖2 ≤ d

1/2‖S+‖2 ≤ d1/2kd/2 ,

where ‖S+‖2 is the spectral norm of S+ and the final inequality follows from Lemma 24.

D Non-equivalence to Hedge

Even in the full information setting Algorithm 1 does not reduce to Hedge, even when an additional
constraint is added to Eq. (9) that the estimation function is unbiased: G ∈ H◦. The full information
game with binary losses and k actions has d = 2k outcomes, which we associate with {0, 1}k via
some arbitrary bijection and then view the outcomes as being in {0, 1}k instead of [d]. The signal
matrix is Φax = x ∈ {0, 1}k and the loss matrix is Lax = xa. Given distribution q ∈ P , the
estimation function G ∈ H◦ that minimise the objective in Eq. (9) for the full information game can
be calculated analytically as

G(a, σ) = pa(σ + c(σ)) ,

where the shifting constant c(σ) is given by

c(σ) =
1

η
log (〈q, exp(−ησ)〉) = −〈q, σ〉+O(η) .

The sampling distribution p should be the minimiser of

1

η
min
p∈P

max
x∈{0,1}k

(
〈p− q, x〉+

1

η
(η〈q, x〉+ log (〈q, exp(−ηx)〉))

)
≈ 1

η
min
p∈P

max
x∈{0,1}k

(
〈p− q, x〉+

η

2
〈q, x2〉

)
.

The inner optimisation problem is not especially pleasant, but as η tends to zero the linear term dom-
inates and the optimal p tends to q. Generally speaking, however, the optimal p is not equal to q. A
numerical calculation shows that when k = 2 and η = 0.5 and q = (0.9, 0.1), then the optimal p is
approximately p = (0.897, 0.103) 6= q.
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E Technical lemmas

Lemma 22 (Pogodin and Lattimore 2019). Let (at)
n
t=1 be a sequence of non-negative reals. Then

n∑
t=1

at√
1 +

∑t−1
s=1 as

≤ 4

√√√√1 +
1

2

n∑
t=1

at + max
t∈[n]

at .

Lemma 23. Let α > 0 and (at)
n
t=1 be a sequence of non-negative reals with at+1 ≤ at+αa

1/4
t . Then

an ≤
(

3α(n− 1)

4
+ a

3/4
1

)4/3

.

Proof. Consider the differential equation y(0) = a1 and y′(t) = αy(t)1/4, which has solution

y(t) =

(
3αt

4
+ a

3/4
1

)4/3

.

By comparison, an ≤ y(n− 1) and the result follows.

The next lemma provides a lower bound on the smallest non-zero eigenvalue of a positive semi-
definite matrix with integer entries. Such results are somehow the reverse of the more well-known
Hadamard problem of finding the maximum determinant [Alon and Vũ, 1997]. Presumably the naive
bound below is known to experts, but a source seems hard to find.

Lemma 24. Let k ≥ 3 andA ∈ {0, . . . , k}d×d be non-zero and positive semi-definite with eigenvalues
λ1, . . . , λd. Then min{λi : λi > 0} ≥ k−d.

Proof. Assume without loss of generality that (λj)
d
j=1 is decreasing and i is the index of the smallest

non-zero eigenvalue. If i = 1, then λi ≥ 1 and the result is immediate. Suppose now that i > 1. Since
A has integer coefficients, the product of its non-zero eigenvalues is a positive integer, which means
that

∏
i:λi>0 λi ≥ 1. Hence, by the arithmetic-geometric mean inequality,

1

λi
≤

i−1∏
j=1

λj ≤

 1

i− 1

i−1∑
j=1

λj

i−1

≤
(

tr(A)

i− 1

)i−1

≤
(

dk

i− 1

)i−1

≤ kd .

Lemma 25. Let V1 and V2 be disjoint sets with |V1| = |V2| = m and V = V1∪V2. Suppose that (V,E)
is a bipartite graph with E ⊆ V1×V2 and f : V → R is a function such that f(u) + f(v) ∈ [0, 1] for
all (u, v) ∈ E. Then there exists a function g : V → R such that

(a) ‖g‖∞ ≤
m
2 .

(b) g(u) + g(v) = f(u) + f(v) for all u, v ∈ E.

Proof. We define g on each connected component of (V,E). For edge (u, v) ∈ E we abuse notation
by writing f(e) = f(u)+f(v). Let U ⊆ V be a connected component and u = arg minv∈U∩V1 f(v).

g(v) =

{
f(v)− f(u)−m/2 + 1, if v ∈ V1;

f(v) + f(u) +m/2− 1, if v ∈ V2 .
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Then for any v ∈ U ∩ V1 there exists a path (et)
n
t=1 from v to u with n ≤ 2(m− 1) and

g(v) +m/2− 1 = g(v)− g(u) =
n∑
t=1

(−1)t+1f(et) ≤ m− 1 .

Hence g(v) ∈ [−m/2+1,m/2] for all v ∈ U∩V1 and so g(v) ∈ [−m/2,m/2] for all v ∈ U∩V2.

The following lemma has been seen before in many forms [Auer et al., 1995, for example] and
follows immediately from the Chernoff method.

Lemma 26. Suppose that (Xt)
n
t=1 is a sequence of random variables adapted to filtration (Ft)nt=1

and (λt)
n
t=1 is (Ft)-predictable and for η > 0,

E[exp(ηXt − λ2
t ) | Ft−1] ≤ 1 a.s. .

Then for any δ ∈ (0, 1),

P

(
n∑
t=1

Xt ≥
n∑
t=1

λ2
t

η
+

log(1/δ)

η

)
≤ δ .

Proof. By Markov’s inequality and the tower rule for conditional expectation,

P

(
exp

(
n∑
t=1

ηXt − λ2
t

)
≥ 1

δ

)
≤ δ .

Re-arranging completes the proof.

F A second-order cone approximation

The optimisation problem in Eq. (9) is convex and can be written as an exponential cone program.
For small problems and reasonably large η it is amenable to standard methods. Numerical instability
seems to be a problem when η is small, however. A practical resolution is to move some of the analysis
into the optimisation problem by adding constraints on the magnitude of the estimation function and
then approximating Ψq by an upper bound as in Eq. (6). This leads to the following formulation of the
approximation of Eq. (9) as a second-order cone program:

minimise
G∈H,p∈P

max
x∈[d]

[
(p− q)>Lex + biasq(G;xt)

η
+

k∑
a=1

〈q,G(a,Φax)2〉
pa

]
subject to G(a, σ) +

pa
η
1 ≥ 0 for all a and σ

and pa ≥ ε for all a .

(19)

The first constraint justifies using the bound in Eq. (6) to approximate Ψq. The parameter ε ≥ 0 in the
second constraint is present to improve numerical stability and should be chosen so that its impact on
the regret is negligible. For example, ε = η2.
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Let opt∼q (η) be the optimal value of the above optimisation problem and

opt∼∗ (η) = sup
q∈P

opt∼q (η) .

It is straightforward to show that the value of Eq. (9) at the optimiser of Eq. (19) is at most opt∼q (η).
Indeed, the upper bounds on optq(η) were all proven in this manner. We are not aware of a situation
where optq(η)� opt∼q (η).

0.2 0.4 0.6 0.8 1

0

2

4

6

c

opt∗(η)

opt∼∗ (η)
Eq. (9) at optimiser of Eq. (19)

Figure 4: The plot illustrates the quality of the approximation in Eq. (19) for the matching pennies game with
the cost varying on the x-axis and a fixed learning rate: η = 0.01. The blue line shows opt∗(η). The red line
shows opt∼∗ (η) and the black line is the value of Eq. (9) evaluated at the optimiser of Eq. (19). At least for this
game the approximation is quite reasonable. The abrupt increase when c > 1/2 occurs because this is where
the game transitions from being locally observable to only globally observable. Both Eq. (9) and Eq. (19) were
solved using the Splitting Cone Solver [O’Donoghue et al., 2016, 2017].

G Experiments

In our simple experiments we use the Splitting Cone Solver [O’Donoghue et al., 2016, 2017] to solve
the optimisation problem in Eq. (19). The performance of the algorithm is illustrated on the costly
matching pennies game (Eq. (7)), which is locally observable and non-degenerate for c ∈ (0, 1/2)
and degenerate and globally observable for c > 1/2. When c = 1/2 it is degenerate and locally
observable. When c = 0 it is trivial. The next figure shows the regret of ExpPM in costly matching
pennies for two different values of c.
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Figure 5: Costly matching pennies where the adversary is stochastic and samples from the outcomes i.i.d. from
distribution (µ, 1 − µ). The horizon is n = 2000. On the left plot the cost is c = 3/10 and the algorithm is
compared to Neighbourhood Watch 2 [Lattimore and Szepesvári, 2019a]. On the right plot the cost is c = 1
and the algorithm is compared to the algorithm by Cesa-Bianchi et al. [2006].
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