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‘Bandit Algorithms’ book
Joint work with Csaba
Free online at http://banditalgs.com
Covers all topics in slides and more

http://banditalgs.com


Overview
Today • What are bandits

• Applications
• Optimism in the face of uncertainty
• Scaling up
• Linear bandits and structure

Next • Adversarial bandits
• Online convex optimization
• Mirror descent
• Bandits, combinatorial bandits, shortestpath problems, adversarial linear bandits



Bandit problems

• Baby reinforcement learning
• Acting in the face of uncertainty
• No planning



Bandits
Finite action set A = {1, 2, . . . , k}

For each a ∈ A there is an unknown distribution Pa
Learner chooses At ∈ A and observes reward Rt ∼ PAt

Learner wants to maximise∑n
t=1Rt



Why care?

• A simplified view of exploration/exploitation
• Applications
• Fun math



Applications
• Clinical trials
• A/B testing
• Ad placement
• Recommender systems
• Network routing
• Game tree search
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The learning objective
Let µa be the mean of Pa and µ∗ = maxa∈A µa

The optimal action is a∗ = argmaxa µa

Our task is to minimise the regret

Rn = nµ∗ − E

[
n∑
t=1

Rt

]

The price paid by the learner for not knowing µ



Assumptions matter
Mean reward for each arm are unknown
Necessary to make some assumptions
Examples:• Bernoulli• Gaussian with unknown mean and unit variance• Gaussian with unknown mean and unknown variance• 1-subgaussian• Bounded in [0, 1] with unknown variance• Supported on (−∞, b]• Unknown mean and variance less than known σ2

• Kurtosis less than κ• Many moreStrong assumptions lead to better algorithms (if you’re right)



Algorithmic idea
Estimate the mean of each arm
Only play arms that are statistically plausibly optimal
What is this ‘statistically plausible’ and which arm toplay?
We need our assumptions. For the next little while:
Gaussian with unit variance



Optimism
People are naturally optimistic
Psychological benefits and...
Encourages exploration

(some downsides too)



Optimism principle
‘You should act as if you are in the nicest plausibleworld possible’

Guarantees either (a) optimality or (b) exploration
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Concentration for Gaussian sums
Let X1, . . . , XT be a sequence of independent Gaussianrandom variables with mean µ and variance 1 and

µ̂ =
1

T

T∑
t=1

Xt

Then for any δ ∈ (0, 1),
P

(
µ̂ ≥ µ+

√
2 log(1/δ)

T

)
≤ δ

P

(
µ̂ ≤ µ−

√
2 log(1/δ)

T

)
≤ δ



‘Nicest’ In bandits, we want the mean to be large
‘Plausible’ The mean cannot be much larger than theempirical mean

Upper Confidence Bound Algorithm
Choose each arm once and then

At = argmaxa µ̂a(t− 1) +

√
2 log(1/δ)

Ta(t− 1)

µ̂a(t) = empirical mean of arm a after round t
Ta(t) = number of plays of arm a after round t

δ = confidence level
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Regret analysis
Step 1 Decompose the regret over the arms
Step 2 On a ‘good’ event prove that suboptimal armsare not played too often
Step 3 Show the ‘good’ event occurs with highprobability



∆a = µ∗ − µa

Ta(t) =
∑t

s=1 1(As = a)

Regret decomposition

Rn = nµ∗ − E

[
n∑
t=1

Rt

]

= E

[
n∑
t=1

(µ∗ −Rt)

]

= E

[
n∑
t=1

∆At

]

= E

[
n∑
t=1

∑
a∈A

1(At = a)∆a

]
=
∑
a∈A

∆aE[Ta(n)]
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Assume for all t that µa +

√
2 log(1/δ)

Ta(t− 1)
≥ µ̂a(t− 1)

µ̂a∗(t− 1) +

√
2 log(1/δ)

Ta∗(t− 1)
≥ µ∗

Now suppose that At = a in round t
µa+2

√
2 log(1/δ)

Ta(t− 1)
≥ µ̂a(t− 1) +

√
2 log(1/δ)

Ta(t− 1)

≥ µ̂a∗(t− 1) +

√
2 log(1/δ)

Ta∗(t− 1)
≥ µa∗ = µa + ∆a

Hence
Ta(t− 1) ≤ 8 log(1/δ)

∆2
a

=⇒ Ta(n) ≤ 1 +
8 log(1/δ)

∆2
a
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Let µ̂a,s be the empirical mean of arm a after s plays
The concentration theorem shows that

P

(
µ̂a,s ≥ µa +

√
2 log(1/δ)

s

)
≤ δ

Combining with a union bound,
P

(
exists s ≤ n : µ̂a,s ≥ µa +

√
2 log(1/δ)

s

)
≤ nδ

P (∪iBi) ≤
∑

i P (Bi)



Putting it together
Rn =

∑
a∈A

∆aE[Ta(n)]

≤
∑

a∈A:∆a>0

∆a

(
2δn2 + 1 +

8 log(1/δ)

∆2
a

)
≤

∑
a∈A:∆a>0

3∆a +
16 log(n)

∆a

Choose δ = 1/n2



Sanity checking our results
We have proven the regret of UCB is at most

Rn ≤
∑

a∈A:∆a>0

3∆a +
16 log(n)

∆a

Useless when ∆ is very small



Problem independent bound
Rn =

∑
a∈A

∆aE[Ta(n)]

=
∑

a∈A:∆a≤∆

∆aE[Ta(n)] +
∑

a∈A:∆a>∆

∆aE[Ta(n)]

≤ n∆ +
∑

a∈A:∆a>∆

3∆a +
16 log(n)

∆a

= O(
√
nk log(n))
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Refinements
• Anytime algorithm: µ̂i(t− 1) +

√
2 log(t)

Ti(t− 1)

where log(t) = log(1 + t log2(t))

• Optimal constants: lim sup
n→∞

Rn

log(n)
=
∑
i:∆i>0

2

∆i

• Minimax optimality: Rn = O(
√
kn)

(for a different algorithm)
• Lower bounds



Limitations

• Model is not practical when k is very large
• Lot’s of bandit problems exhibit structure

• Many ad’s look similar
• Routes in a network share paths

• Need to introduce some structure



Contextual linear bandits
• Action set is At ⊂ Rd

• Choose action At ∈ At
• Reward is Xt = 〈At, θ〉+ ηt

• θ ∈ Rd is unknown
• ηt is the noise
• Lots of actions, but only d unknown parameters



Optimism for linear bandits
• Same idea
• Estimate θ
• Build confidence intervals
• Play the action that maximizes an upperconfidence bound



Least squares estimation
• A1, . . . , At ∈ Rd

• X1, . . . , Xt ∈ R

• (regularized) Least squares estimator
θ̂t = argminθ̂

n∑
t=1

(
Xt − 〈At, θ̂〉

)2

+ λ‖θ̂‖2
2

• Exercise Show that θ̂t = G−1
t St

Gt = λI +
t∑

s=1

AsA
>
s St =

t∑
s=1

AsXs



Least squares estimation
• A1, . . . , At ∈ Rd and X1, . . . , Xt ∈ R and θ̂t = G−1

t St

Gt = λI +
t∑

s=1

AsA
>
s St =

t∑
s=1

AsXs

• When λ = 0

• Unbiased E[θ̂t] = θ

• Variance E[〈x, θ̂t − θ〉2] = ‖x‖2
G−1

t
= x>G−1

t x



Least squares estimation
• Subtle issue Fixed design or sequential design
• When A1, . . . , At are chosen in advance,

P
(
〈x, θ̂ − θ〉 ≥

√
2 ‖x‖2

G−1
t

log(1/δ)

)
≤ δ

• Easy proof (exercise!)
• Result is not true when A1, . . . , At are chosensequentially

P
(
〈x, θ̂ − θ〉 ≥

√
2d ‖x‖2

G−1
t

log(1/δ)

)
. δ

• More difficult proof



UCB for contextual linear bandits
• Observe At
• Choose At = argmaxa∈At

〈θ̂t, a〉+ βt ‖a‖G−1
t−1

βt ≈
√
d log(t)

• Observe Xt and update least squares estimator


