Bandit Algorithms (part 1)

Tor Lattimore

'Bandit Algorithms' book

Joint work with Csaba
Free online at http://banditalgs.com
Covers all topics in slides and more

Overview

Today - What are bandits

- Applications
- Optimism in the face of uncertainty
- Scaling up
- Linear bandits and structure
$\begin{array}{ll}\text { Next } & \text { Adversarial bandits } \\ & \text { - Online convex optimization }\end{array}$
- Mirror descent
- Bandits, combinatorial bandits, shortest path problems, adversarial linear bandits

Bandit problems

- Baby reinforcement learning
- Acting in the face of uncertainty
- No planning

Bandits

Finite action set $\mathcal{A}=\{1,2, \ldots, k\}$
For each $a \in \mathcal{A}$ there is an unknown distribution P_{a}
Learner chooses $A_{t} \in \mathcal{A}$ and observes reward $R_{t} \sim P_{A_{t}}$
Learner wants to maximise $\sum_{t=1}^{n} R_{t}$

Why care?

- A simplified view of exploration/exploitation
- Applications
- Fun math

Applications

- Clinical trials
- A/B testing
- Ad placement
- Recommender systems
- Network routing
- Game tree search

Bandits

Finite action set $\mathcal{A}=\{1,2, \ldots, k\}$
For each $a \in \mathcal{A}$ there is an unknown distribution P_{a}
Learner chooses $A_{t} \in \mathcal{A}$ and observes reward $R_{t} \sim P_{A_{t}}$
Learner wants to maximise $\sum_{t=1}^{n} R_{t}$

The learning objective

Let μ_{a} be the mean of P_{a} and $\mu^{*}=\max _{a \in \mathcal{A}} \mu_{a}$
The optimal action is $a^{*}=\operatorname{argmax}_{a} \mu_{a}$
Our task is to minimise the regret

$$
\mathfrak{R}_{n}=n \mu^{*}-\mathbb{E}\left[\sum_{t=1}^{n} R_{t}\right]
$$

The price paid by the learner for not knowing μ

Assumptions matter

Mean reward for each arm are unknown
Necessary to make some assumptions

Examples:

- Bernoulli
- Gaussian with unknown mean and unit variance
- Gaussian with unknown mean and unknown variance
- 1-subgaussian
- Bounded in $[0,1]$ with unknown variance
- Supported on $(-\infty, b]$
- Unknown mean and variance less than known σ^{2}
- Kurtosis less than κ
- Many more

Strong assumptions lead to better algorithms (fif youre right)

Algorithmic idea

Estimate the mean of each arm
Only play arms that are statistically plausibly optimal

What is this 'statistically plausible' and which arm to play?

We need our assumptions. For the next little while: Gaussian with unit variance

Optimism

People are naturally optimistic

Psychological benefits and...

Encourages exploration

The
Optimism Bias

Positive Brain

Optimism principle

'You should act as if you are in the nicest plausible world possible'

Optimism principle

'You should act as if you are in the nicest plausible world possible'

Guarantees either (a) optimality or (b) exploration

Concentration for Gaussian sums

Let X_{1}, \ldots, X_{T} be a sequence of independent Gaussian random variables with mean μ and variance 1 and

$$
\hat{\mu}=\frac{1}{T} \sum_{t=1}^{T} X_{t}
$$

Then for any $\delta \in(0,1)$,

$$
\begin{aligned}
& \mathbb{P}\left(\hat{\mu} \geq \mu+\sqrt{\frac{2 \log (1 / \delta)}{T}}\right) \leq \delta \\
& \mathbb{P}\left(\hat{\mu} \leq \mu-\sqrt{\frac{2 \log (1 / \delta)}{T}}\right) \leq \delta
\end{aligned}
$$

'Nicest’ In bandits, we want the mean to be large

 'Plausible' The mean cannot be much larger than the empirical mean'Nicest’ In bandits, we want the mean to be large 'Plausible' The mean cannot be much larger than the empirical mean

Upper Confidence Bound Algorithm

Choose each arm once and then

$$
A_{t}=\operatorname{argmax}_{a} \hat{\mu}_{a}(t-1)+\sqrt{\frac{2 \log (1 / \delta)}{T_{a}(t-1)}}
$$

$\hat{\mu}_{a}(t)=$ empirical mean of arm a after round t
$T_{a}(t)=$ number of plays of arm a after round t
$\delta=$ confidence level

Regret analysis

Step 1 Decompose the regret over the arms

Step 2 On a 'good' event prove that suboptimal arms are not played too often

Step 3 Show the 'good' event occurs with high probability

Regret decomposition

$$
\Re_{n}=n \mu^{*}-\mathbb{E}\left[\sum_{t=1}^{n} R_{t}\right]
$$

$T_{a}(t)=\sum_{s=1}^{t} \mathbb{1}\left(A_{s}=a\right)$

Regret decomposition

$$
\Delta_{a}=\mu^{*}-\mu_{a}
$$

$$
\begin{aligned}
\mathfrak{R}_{n} & =n \mu^{*}-\mathbb{E}\left[\sum_{t=1}^{n} R_{t}\right] \\
& =\mathbb{E}\left[\sum_{t=1}^{n}\left(\mu^{*}-R_{t}\right)\right]
\end{aligned}
$$

$$
T_{a}(t)=\sum_{s=1}^{t} \mathbb{1}\left(A_{s}=a\right)
$$

Regret decomposition

$$
\begin{aligned}
\mathfrak{R}_{n} & =n \mu^{*}-\mathbb{E}\left[\sum_{t=1}^{n} R_{t}\right] \\
& =\mathbb{E}\left[\sum_{t=1}^{n}\left(\mu^{*}-R_{t}\right)\right] \\
& =\mathbb{E}\left[\sum_{t=1}^{n} \Delta_{A_{t}}\right]
\end{aligned}
$$

Regret decomposition

$$
\begin{aligned}
\mathfrak{R}_{n} & =n \mu^{*}-\mathbb{E}\left[\sum_{t=1}^{n} R_{t}\right] \\
& =\mathbb{E}\left[\sum_{t=1}^{n}\left(\mu^{*}-R_{t}\right)\right] \\
& =\mathbb{E}\left[\sum_{t=1}^{n} \Delta_{A_{t}}\right] \\
& =\mathbb{E}\left[\sum_{t=1}^{n} \sum_{a \in \mathcal{A}} \mathbb{1}\left(A_{t}=a\right) \Delta_{a}\right]
\end{aligned}
$$

$$
T_{a}(t)=\sum_{s=1}^{t} \mathbb{1}\left(A_{s}=a\right)
$$

Regret decomposition

$$
\begin{aligned}
\mathfrak{R}_{n} & =n \mu^{*}-\mathbb{E}\left[\sum_{t=1}^{n} R_{t}\right] \\
& =\mathbb{E}\left[\sum_{t=1}^{n}\left(\mu^{*}-R_{t}\right)\right] \\
& =\mathbb{E}\left[\sum_{t=1}^{n} \Delta_{A_{t}}\right] \\
& =\mathbb{E}\left[\sum_{t=1}^{n} \sum_{a \in \mathcal{A}} \mathbb{1}\left(A_{t}=a\right) \Delta_{a}\right] \\
& =\sum_{a \in \mathcal{A}} \Delta_{a} \mathbb{E}\left[T_{a}(n)\right]
\end{aligned}
$$

$$
T_{a}(t)=\sum_{s=1}^{t} \mathbb{1}\left(A_{s}=a\right)
$$

Assume for all t that

$$
\begin{gathered}
\mu_{a}+\sqrt{\frac{2 \log (1 / \delta)}{T_{a}(t-1)}} \geq \hat{\mu}_{a}(t-1) \\
\hat{\mu}_{a^{*}}(t-1)+\sqrt{\frac{2 \log (1 / \delta)}{T_{a^{*}}(t-1)}} \geq \mu^{*}
\end{gathered}
$$

Assume for all t that

$$
\begin{aligned}
& \mu_{a}+\sqrt{\frac{2 \log (1 / \delta)}{T_{a}(t-1)}} \geq \hat{\mu}_{a}(t-1) \\
& \hat{\mu}_{a^{*}}(t-1)+\sqrt{\frac{2 \log (1 / \delta)}{T_{a^{*}}(t-1)}} \geq \mu^{*}
\end{aligned}
$$

Now suppose that $A_{t}=a$ in round t

$$
\mu_{a}+2 \sqrt{\frac{2 \log (1 / \delta)}{T_{a}(t-1)}} \geq \hat{\mu}_{a}(t-1)+\sqrt{\frac{2 \log (1 / \delta)}{T_{a}(t-1)}}
$$

Assume for all t that

$$
\begin{aligned}
& \mu_{a}+\sqrt{\frac{2 \log (1 / \delta)}{T_{a}(t-1)}} \geq \hat{\mu}_{a}(t-1) \\
& \hat{\mu}_{a^{*}}(t-1)+\sqrt{\frac{2 \log (1 / \delta)}{T_{a^{*}}(t-1)}} \geq \mu^{*}
\end{aligned}
$$

Now suppose that $A_{t}=a$ in round t

$$
\begin{aligned}
& \mu_{a}+2 \sqrt{\frac{2 \log (1 / \delta)}{T_{a}(t-1)}} \geq \hat{\mu}_{a}(t-1)+\sqrt{\frac{2 \log (1 / \delta)}{T_{a}(t-1)}} \\
& \quad \geq \hat{\mu}_{a^{*}}(t-1)+\sqrt{\frac{2 \log (1 / \delta)}{T_{a^{*}}(t-1)}} \geq \mu_{a^{*}}=\mu_{a}+\Delta_{a}
\end{aligned}
$$

Assume for all t that

$$
\begin{aligned}
& \mu_{a}+\sqrt{\frac{2 \log (1 / \delta)}{T_{a}(t-1)}} \geq \hat{\mu}_{a}(t-1) \\
& \hat{\mu}_{a^{*}}(t-1)+\sqrt{\frac{2 \log (1 / \delta)}{T_{a^{*}}(t-1)}} \geq \mu^{*}
\end{aligned}
$$

Now suppose that $A_{t}=a$ in round t

$$
\begin{aligned}
& \mu_{a}+2 \sqrt{\frac{2 \log (1 / \delta)}{T_{a}(t-1)}} \geq \hat{\mu}_{a}(t-1)+\sqrt{\frac{2 \log (1 / \delta)}{T_{a}(t-1)}} \\
& \quad \geq \hat{\mu}_{a^{*}}(t-1)+\sqrt{\frac{2 \log (1 / \delta)}{T_{a^{*}}(t-1)}} \geq \mu_{a^{*}}=\mu_{a}+\Delta_{a}
\end{aligned}
$$

Hence

$$
T_{a}(t-1) \leq \frac{8 \log (1 / \delta)}{\Delta_{a}^{2}} \Longrightarrow T_{a}(n) \leq 1+\frac{8 \log (1 / \delta)}{\Delta_{a}^{2}}
$$

Let $\hat{\mu}_{a, s}$ be the empirical mean of arm a after s plays
The concentration theorem shows that

$$
\mathbb{P}\left(\hat{\mu}_{a, s} \geq \mu_{a}+\sqrt{\frac{2 \log (1 / \delta)}{s}}\right) \leq \delta
$$

Combining with a union bound,

$$
\mathbb{P}\left(\text { exists } s \leq n: \hat{\mu}_{a, s} \geq \mu_{a}+\sqrt{\frac{2 \log (1 / \delta)}{s}}\right) \leq n \delta
$$

$$
\mathbb{P}\left(\cup_{i} B_{i}\right) \leq \sum_{i} \mathbb{P}\left(B_{i}\right)
$$

Putting it together

$$
\begin{aligned}
\mathfrak{R}_{n} & =\sum_{a \in \mathcal{A}} \Delta_{a} \mathbb{E}\left[T_{a}(n)\right] \\
& \leq \sum_{a \in \mathcal{A}: \Delta_{a}>0} \Delta_{a}\left(2 \delta n^{2}+1+\frac{8 \log (1 / \delta)}{\Delta_{a}^{2}}\right) \\
& \leq \sum_{a \in \mathcal{A}: \Delta_{a}>0} 3 \Delta_{a}+\frac{16 \log (n)}{\Delta_{a}}
\end{aligned}
$$

Sanity checking our results

We have proven the regret of UCB is at most

$$
\mathfrak{R}_{n} \leq \sum_{a \in \mathcal{A}: \Delta_{a}>0} 3 \Delta_{a}+\frac{16 \log (n)}{\Delta_{a}}
$$

Useless when Δ is very small

Problem independent bound

$$
\mathfrak{R}_{n}=\sum_{a \in \mathcal{A}} \Delta_{a} \mathbb{E}\left[T_{a}(n)\right]
$$

Problem independent bound

$$
\begin{aligned}
\mathfrak{R}_{n} & =\sum_{a \in \mathcal{A}} \Delta_{a} \mathbb{E}\left[T_{a}(n)\right] \\
& =\sum_{a \in \mathcal{A}: \Delta_{a} \leq \Delta} \Delta_{a} \mathbb{E}\left[T_{a}(n)\right]+\sum_{a \in \mathcal{A}: \Delta_{a}>\Delta} \Delta_{a} \mathbb{E}\left[T_{a}(n)\right]
\end{aligned}
$$

Problem independent bound

$$
\begin{aligned}
\mathfrak{R}_{n} & =\sum_{a \in \mathcal{A}} \Delta_{a} \mathbb{E}\left[T_{a}(n)\right] \\
& =\sum_{a \in \mathcal{A}: \Delta_{a} \leq \Delta} \Delta_{a} \mathbb{E}\left[T_{a}(n)\right]+\sum_{a \in \mathcal{A}: \Delta_{a}>\Delta} \Delta_{a} \mathbb{E}\left[T_{a}(n)\right] \\
& \leq n \Delta+\sum_{a \in \mathcal{A}: \Delta_{a}>\Delta} 3 \Delta_{a}+\frac{16 \log (n)}{\Delta_{a}}
\end{aligned}
$$

Problem independent bound

$$
\begin{aligned}
\Re_{n} & =\sum_{a \in \mathcal{A}} \Delta_{a} \mathbb{E}\left[T_{a}(n)\right] \\
& =\sum_{a \in \mathcal{A}: \Delta_{a} \leq \Delta} \Delta_{a} \mathbb{E}\left[T_{a}(n)\right]+\sum_{\substack{A \in \mathcal{A}: \Delta_{a}>\Delta}} \Delta_{a} \mathbb{E}\left[T_{a}(n)\right] \\
& \leq n \Delta+\sum_{a \in \mathcal{A}: \Delta_{a}>\Delta} 3 \Delta_{a}+\frac{16 \log (n)}{\Delta_{a}} \\
& =O(\sqrt{n k \log (n)})
\end{aligned}
$$

Refinements

- Anytime algorithm: $\hat{\mu}_{i}(t-1)+\sqrt{\frac{2 \log (t)}{T_{i}(t-1)}}$

$$
\text { where } \overline{\log }(t)=\log \left(1+t \log ^{2}(t)\right)
$$

- Optimal constants: $\limsup _{n \rightarrow \infty} \frac{\mathfrak{R}_{n}}{\log (n)}=\sum_{i: \Delta_{i}>0} \frac{2}{\Delta_{i}}$
- Minimax optimality: $\Re_{n}=O(\sqrt{k n})$
(for a different algorithm)
- Lower bounds

Limitations

- Model is not practical when k is very large
- Lot’s of bandit problems exhibit structure
- Many ad's look similar
- Routes in a network share paths
- Need to introduce some structure

Contextual linear bandits

- Action set is $\mathcal{A}_{t} \subset \mathbb{R}^{d}$
- Choose action $A_{t} \in \mathcal{A}_{t}$
- Reward is $X_{t}=\left\langle A_{t}, \theta\right\rangle+\eta_{t}$
- $\theta \in \mathbb{R}^{d}$ is unknown
- η_{t} is the noise
- Lots of actions, but only d unknown parameters

Optimism for linear bandits

- Same idea
- Estimate θ
- Build confidence intervals
- Play the action that maximizes an upper confidence bound

Least squares estimation

- $A_{1}, \ldots, A_{t} \in \mathbb{R}^{d}$
- $X_{1}, \ldots, X_{t} \in \mathbb{R}$
- (regularized) Least squares estimator

$$
\hat{\theta}_{t}=\operatorname{argmin}_{\hat{\theta}} \sum_{t=1}^{n}\left(X_{t}-\left\langle A_{t}, \hat{\theta}\right\rangle\right)^{2}+\lambda\|\hat{\theta}\|_{2}^{2}
$$

- Exercise Show that $\hat{\theta}_{t}=G_{t}^{-1} S_{t}$

$$
G_{t}=\lambda I+\sum_{s=1}^{t} A_{s} A_{s}^{\top} \quad S_{t}=\sum_{s=1}^{t} A_{s} X_{s}
$$

Least squares estimation

- $A_{1}, \ldots, A_{t} \in \mathbb{R}^{d}$ and $X_{1}, \ldots, X_{t} \in \mathbb{R}$ and $\hat{\theta}_{t}=G_{t}^{-1} S_{t}$

$$
G_{t}=\lambda I+\sum_{s=1}^{t} A_{s} A_{s}^{\top} \quad S_{t}=\sum_{s=1}^{t} A_{s} X_{s}
$$

- When $\lambda=0$
- Unbiased $\mathbb{E}\left[\hat{\theta}_{t}\right]=\theta$
- Variance $\mathbb{E}\left[\left\langle x, \hat{\theta}_{t}-\theta\right\rangle^{2}\right]=\|x\|_{G_{t}^{-1}}^{2}=x^{\top} G_{t}^{-1} x$

Least squares estimation

- Subtle issue Fixed design or sequential design
- When A_{1}, \ldots, A_{t} are chosen in advance,

$$
\mathbb{P}\left(\langle x, \hat{\theta}-\theta\rangle \geq \sqrt{2\|x\|_{G_{t}^{-1}}^{2} \log (1 / \delta)}\right) \leq \delta
$$

- Easy proof (exercise!)
- Result is not true when A_{1}, \ldots, A_{t} are chosen sequentially

$$
\mathbb{P}\left(\langle x, \hat{\theta}-\theta\rangle \geq \sqrt{2 d\|x\|_{G_{t}^{-1}}^{2} \log (1 / \delta)}\right) \lesssim \delta
$$

- More difficult proof

UCB for contextual linear bandits

- Observe \mathcal{A}_{t}
- Choose $A_{t}=\operatorname{argmax}_{a \in \mathcal{A}_{t}}\left\langle\hat{\theta}_{t}, a\right\rangle+\beta_{t}\|a\|_{G_{t-1}^{-1}}$

$$
\beta_{t} \approx \sqrt{d \log (t)}
$$

- Observe X_{t} and update least squares estimator

