Bandit Algorithms (part 1)

Tor Lattimore

'Bandit Algorithms' book

- Joint work with Csaba
- Free online at http://banditalgs.com
- Covers all topics in slides and more

Overview

- **Today** What are bandits
 - Applications
 - Optimism in the face of uncertainty
 - Scaling up
 - Linear bandits and structure
 - Adversarial bandits
 - Online convex optimization
 - Mirror descent
 - Bandits, combinatorial bandits, shortest path problems, adversarial linear bandits

Next

Bandit problems

- Baby reinforcement learning
- Acting in the face of uncertainty
- No planning

Bandits

Finite action set $\mathcal{A} = \{1, 2, \dots, k\}$

For each $a \in \mathcal{A}$ there is an **unknown** distribution P_a

Learner chooses $A_t \in \mathcal{A}$ and observes **reward** $R_t \sim P_{A_t}$

Learner wants to maximise $\sum_{t=1}^{n} R_t$

Why care?

- · A simplified view of exploration/exploitation
- Applications
- Fun math

Applications

- Clinical trials
- A/B testing
- Ad placement
- Recommender systems
- Network routing
- Game tree search

Bandits

Finite action set $\mathcal{A} = \{1, 2, \dots, k\}$

For each $a \in \mathcal{A}$ there is an **unknown** distribution P_a

Learner chooses $A_t \in \mathcal{A}$ and observes **reward** $R_t \sim P_{A_t}$

Learner wants to maximise $\sum_{t=1}^{n} R_t$

The learning objective

Let μ_a be the mean of P_a and $\mu^* = \max_{a \in \mathcal{A}} \mu_a$

The optimal action is $a^* = \operatorname{argmax}_a \mu_a$

Our task is to minimise the **regret**

$$\mathfrak{R}_n = n\mu^* - \mathbb{E}\left[\sum_{t=1}^n R_t\right]$$

The price paid by the learner for not knowing μ

Assumptions matter

- Mean reward for each arm are unknown
- Necessary to make some assumptions
- Examples:
 - Bernoulli
 - · Gaussian with unknown mean and unit variance
 - Gaussian with unknown mean and unknown variance
 - 1-subgaussian
 - Bounded in [0,1] with unknown variance
 - Supported on $(-\infty, b]$
 - Unknown mean and variance less than known σ^2
 - Kurtosis less than κ
 - Many more

Strong assumptions lead to better algorithms (if you're right)

Algorithmic idea

- Estimate the mean of each arm
- Only play arms that are statistically plausibly optimal
- What is this 'statistically plausible' and which arm to play?
- We need our assumptions. For the next little while: Gaussian with unit variance

Optimism

People are naturally optimistic

Psychological benefits and...

Encourages exploration

(some downsides too)

Tali Sharot

Copyrighted Material

Optimism principle

'You should act as if you are in the **nicest plausible** world possible'

Optimism principle

'You should act as if you are in the **nicest plausible** world possible'

Guarantees either (a) optimality or (b) exploration

Concentration for Gaussian sums

Let X_1, \ldots, X_T be a sequence of independent Gaussian random variables with mean μ and variance 1 and

$$\hat{\mu} = \frac{1}{T} \sum_{t=1}^{T} X_t$$

Then for any $\delta \in (0,1)$,

$$\mathbb{P}\left(\hat{\mu} \ge \mu + \sqrt{\frac{2\log(1/\delta)}{T}}\right) \le \delta$$
$$\mathbb{P}\left(\hat{\mu} \le \mu - \sqrt{\frac{2\log(1/\delta)}{T}}\right) \le \delta$$

'Nicest' In bandits, we want the mean to be large

'Plausible' The mean cannot be *much* larger than the empirical mean

'Nicest' In bandits, we want the mean to be large

'Plausible' The mean cannot be *much* larger than the empirical mean

Upper Confidence Bound Algorithm
Choose each arm once and then
$$A_t = \operatorname{argmax}_a \hat{\mu}_a(t-1) + \sqrt{\frac{2\log(1/\delta)}{T_a(t-1)}}$$

 $\hat{\mu}_a(t) =$ empirical mean of arm a after round t $T_a(t) =$ number of plays of arm a after round t $\delta =$ confidence level

Regret analysis

- **Step 1** Decompose the regret over the arms
- **Step 2** On a 'good' event prove that suboptimal arms are not played too often
- **Step 3** Show the 'good' event occurs with high probability

$$\mathfrak{R}_n = n\mu^* - \mathbb{E}\left[\sum_{t=1}^n R_t\right]$$

$$\Delta_a = \mu^* - \mu_a$$
$$T_a(t) = \sum_{s=1}^t \mathbb{1}(A_s = a)$$

$$\mathfrak{R}_n = n\mu^* - \mathbb{E}\left[\sum_{t=1}^n R_t\right]$$
$$= \mathbb{E}\left[\sum_{t=1}^n (\mu^* - R_t)\right]$$

$$\Delta_a = \mu^* - \mu_a$$
$$T_a(t) = \sum_{s=1}^t \mathbb{1}(A_s = a)$$

$$\mathfrak{R}_n = n\mu^* - \mathbb{E}\left[\sum_{t=1}^n R_t\right]$$
$$= \mathbb{E}\left[\sum_{t=1}^n (\mu^* - R_t)\right]$$
$$= \mathbb{E}\left[\sum_{t=1}^n \Delta_{A_t}\right]$$

$$\Delta_a = \mu^* - \mu_a$$
$$T_a(t) = \sum_{s=1}^t \mathbb{1}(A_s = a)$$

$$\Delta_a = \mu^* - \mu_a$$
$$T_a(t) = \sum_{s=1}^t \mathbb{1}(A_s = a)$$

$$\begin{aligned} \mathfrak{R}_n &= n\mu^* - \mathbb{E}\left[\sum_{t=1}^n R_t\right] \\ &= \mathbb{E}\left[\sum_{t=1}^n (\mu^* - R_t)\right] \\ &= \mathbb{E}\left[\sum_{t=1}^n \Delta_{A_t}\right] \\ &= \mathbb{E}\left[\sum_{t=1}^n \sum_{a \in \mathcal{A}} \mathbb{1}(A_t = a)\Delta_a\right] \\ &= \sum_{a \in \mathcal{A}} \Delta_a \mathbb{E}[T_a(n)] \end{aligned}$$

$$\Delta_a = \mu^* - \mu_a$$
$$T_a(t) = \sum_{s=1}^t \mathbb{1}(A_s = a)$$

$$\mu_a + \sqrt{\frac{2\log(1/\delta)}{T_a(t-1)}} \ge \hat{\mu}_a(t-1)$$
$$\hat{\mu}_{a^*}(t-1) + \sqrt{\frac{2\log(1/\delta)}{T_{a^*}(t-1)}} \ge \mu^*$$

$$\mu_a + \sqrt{\frac{2\log(1/\delta)}{T_a(t-1)}} \ge \hat{\mu}_a(t-1)$$
$$\hat{\mu}_{a^*}(t-1) + \sqrt{\frac{2\log(1/\delta)}{T_{a^*}(t-1)}} \ge \mu^*$$

Now suppose that $A_t = a$ in round t

$$\mu_a + 2\sqrt{\frac{2\log(1/\delta)}{T_a(t-1)}} \ge \hat{\mu}_a(t-1) + \sqrt{\frac{2\log(1/\delta)}{T_a(t-1)}}$$

$$\mu_a + \sqrt{\frac{2\log(1/\delta)}{T_a(t-1)}} \ge \hat{\mu}_a(t-1)$$
$$\hat{\mu}_{a^*}(t-1) + \sqrt{\frac{2\log(1/\delta)}{T_{a^*}(t-1)}} \ge \mu^*$$

Now suppose that $A_t = a$ in round t

$$\mu_{a} + 2\sqrt{\frac{2\log(1/\delta)}{T_{a}(t-1)}} \ge \hat{\mu}_{a}(t-1) + \sqrt{\frac{2\log(1/\delta)}{T_{a}(t-1)}}$$
$$\ge \hat{\mu}_{a^{*}}(t-1) + \sqrt{\frac{2\log(1/\delta)}{T_{a^{*}}(t-1)}} \ge \mu_{a^{*}} = \mu_{a} + \Delta_{a}$$

$$\mu_a + \sqrt{\frac{2\log(1/\delta)}{T_a(t-1)}} \ge \hat{\mu}_a(t-1)$$
$$\hat{\mu}_{a^*}(t-1) + \sqrt{\frac{2\log(1/\delta)}{T_{a^*}(t-1)}} \ge \mu^*$$

Now suppose that $A_t = a$ in round t

$$\mu_{a} + 2\sqrt{\frac{2\log(1/\delta)}{T_{a}(t-1)}} \ge \hat{\mu}_{a}(t-1) + \sqrt{\frac{2\log(1/\delta)}{T_{a}(t-1)}}$$
$$\ge \hat{\mu}_{a^{*}}(t-1) + \sqrt{\frac{2\log(1/\delta)}{T_{a^{*}}(t-1)}} \ge \mu_{a^{*}} = \mu_{a} + \Delta_{a}$$

Hence $T_a(t-1) \le \frac{8\log(1/\delta)}{\Delta_a^2} \implies T_a(n) \le 1 + \frac{8\log(1/\delta)}{\Delta_a^2}$ Let $\hat{\mu}_{a,s}$ be the empirical mean of arm a after s plays

The concentration theorem shows that

$$\mathbb{P}\left(\hat{\mu}_{a,s} \ge \mu_a + \sqrt{\frac{2\log(1/\delta)}{s}}\right) \le \delta$$

Combining with a union bound,

$$\mathbb{P}\left(\text{exists } s \le n : \hat{\mu}_{a,s} \ge \mu_a + \sqrt{\frac{2\log(1/\delta)}{s}}\right) \le n\delta$$

 $\mathbb{P}\left(\cup_{i} B_{i}\right) \leq \sum_{i} \mathbb{P}\left(B_{i}\right)$

Putting it together

$$\begin{aligned} \Re_n &= \sum_{a \in \mathcal{A}} \Delta_a \mathbb{E}[T_a(n)] \\ &\leq \sum_{a \in \mathcal{A}: \Delta_a > 0} \Delta_a \left(2\delta n^2 + 1 + \frac{8\log(1/\delta)}{\Delta_a^2} \right) \\ &\leq \sum_{a \in \mathcal{A}: \Delta_a > 0} 3\Delta_a + \frac{16\log(n)}{\Delta_a} \end{aligned}$$

Choose $\delta = 1/n^2$

Sanity checking our results

We have proven the regret of UCB is at most

$$\Re_n \le \sum_{a \in \mathcal{A}: \Delta_a > 0} 3\Delta_a + \frac{16\log(n)}{\Delta_a}$$

Useless when Δ is very small

$$\mathfrak{R}_n = \sum_{a \in \mathcal{A}} \Delta_a \mathbb{E}[T_a(n)]$$

$$\mathfrak{R}_{n} = \sum_{a \in \mathcal{A}} \Delta_{a} \mathbb{E}[T_{a}(n)]$$
$$= \sum_{a \in \mathcal{A}: \Delta_{a} \leq \Delta} \Delta_{a} \mathbb{E}[T_{a}(n)] + \sum_{a \in \mathcal{A}: \Delta_{a} > \Delta} \Delta_{a} \mathbb{E}[T_{a}(n)]$$

$$\begin{aligned} \mathfrak{R}_{n} &= \sum_{a \in \mathcal{A}} \Delta_{a} \mathbb{E}[T_{a}(n)] \\ &= \sum_{a \in \mathcal{A}: \Delta_{a} \leq \Delta} \Delta_{a} \mathbb{E}[T_{a}(n)] + \sum_{a \in \mathcal{A}: \Delta_{a} > \Delta} \Delta_{a} \mathbb{E}[T_{a}(n)] \\ &\leq n\Delta + \sum_{a \in \mathcal{A}: \Delta_{a} > \Delta} 3\Delta_{a} + \frac{16 \log(n)}{\Delta_{a}} \end{aligned}$$

$$\begin{aligned} \mathfrak{R}_n &= \sum_{a \in \mathcal{A}} \Delta_a \mathbb{E}[T_a(n)] \\ &= \sum_{a \in \mathcal{A}: \Delta_a \leq \Delta} \Delta_a \mathbb{E}[T_a(n)] + \sum_{a \in \mathcal{A}: \Delta_a > \Delta} \Delta_a \mathbb{E}[T_a(n)] \\ &\leq n\Delta + \sum_{a \in \mathcal{A}: \Delta_a > \Delta} 3\Delta_a + \frac{16 \log(n)}{\Delta_a} \\ &= O(\sqrt{nk \log(n)}) \end{aligned}$$

Refinements

• Anytime algorithm: $\hat{\mu}_i(t-1) + \sqrt{\frac{2 \log(t)}{T_i(t-1)}}$

where $\overline{\log}(t) = \log(1 + t \log^2(t))$

- Optimal constants: $\limsup_{n \to \infty} \frac{\Re_n}{\log(n)} = \sum_{i:\Delta_i > 0} \frac{2}{\Delta_i}$
- Minimax optimality: $\Re_n = O(\sqrt{kn})$

(for a different algorithm)

Lower bounds

Limitations

- Model is not practical when k is very large
- · Lot's of bandit problems exhibit structure
 - Many ad's look similar
 - · Routes in a network share paths
- Need to introduce some structure

Contextual linear bandits

- Action set is $\mathcal{A}_t \subset \mathbb{R}^d$
- Choose action $A_t \in \mathcal{A}_t$
- Reward is $X_t = \langle A_t, \theta \rangle + \eta_t$
- $\theta \in \mathbb{R}^d$ is unknown
- η_t is the noise
- Lots of actions, but only d unknown parameters

Optimism for linear bandits

- Same idea
- Estimate θ
- Build confidence intervals
- Play the action that maximizes an upper confidence bound

Least squares estimation

- $A_1, \ldots, A_t \in \mathbb{R}^d$
- $X_1, \ldots, X_t \in \mathbb{R}$
- (regularized) Least squares estimator

$$\hat{\theta}_t = \operatorname{argmin}_{\hat{\theta}} \sum_{t=1}^n \left(X_t - \langle A_t, \hat{\theta} \rangle \right)^2 + \lambda \|\hat{\theta}\|_2^2$$

• **Exercise** Show that $\hat{\theta}_t = G_t^{-1}S_t$

$$G_t = \lambda I + \sum_{s=1}^t A_s A_s^\top \qquad S_t = \sum_{s=1}^t A_s X_s$$

Least squares estimation

• $A_1, \ldots, A_t \in \mathbb{R}^d$ and $X_1, \ldots, X_t \in \mathbb{R}$ and $\hat{\theta}_t = G_t^{-1} S_t$

$$G_t = \lambda I + \sum_{s=1}^t A_s A_s^\top \qquad S_t = \sum_{s=1}^t A_s X_s$$

- When $\lambda = 0$
- Unbiased $\mathbb{E}[\hat{\theta}_t] = \theta$
- Variance $\mathbb{E}[\langle x, \hat{\theta}_t \theta \rangle^2] = \|x\|_{G_t^{-1}}^2 = x^\top G_t^{-1} x$

Least squares estimation

- Subtle issue Fixed design or sequential design
- When A_1, \ldots, A_t are chosen in advance,

$$\mathbb{P}\left(\langle x, \hat{\theta} - \theta \rangle \ge \sqrt{2 \|x\|_{G_t^{-1}}^2 \log(1/\delta)}\right) \le \delta$$

- Easy proof (exercise!)
- Result is **not true** when A_1, \ldots, A_t are chosen sequentially

$$\mathbb{P}\left(\langle x, \hat{\theta} - \theta \rangle \ge \sqrt{2d \|x\|_{G_t^{-1}}^2 \log(1/\delta)}\right) \lesssim \delta$$

More difficult proof

UCB for contextual linear bandits

- Observe A_t
- Choose $A_t = \operatorname{argmax}_{a \in \mathcal{A}_t} \langle \hat{\theta}_t, a \rangle + \beta_t \|a\|_{G_{t-1}^{-1}}$

$$\beta_t \approx \sqrt{d\log(t)}$$

• Observe X_t and update least squares estimator