
Bandit Algorithms
(part 3)

Tor Lattimore

Menu for the day
• Bandits with experts
• Adversarial linear bandits
• Shortest path problems
• Ranking
• Semibandits

Bandits with experts
• k actions
• Adversary chooses losses `1, . . . , `n ∈ [0, 1]k

• m experts making recommendations
• Expert i recommends action ait in round t
• Learner chooses an action At ∈ {1, . . . , k}

• Regret is
Rn = max

i∈{1,...,m}
E

[
n∑
t=1

`t,At − `t,ait

]

Exp4
• FTRL with negentropy over the experts
• Algorithm samples expert Et from distribution Pt

Pt(i) =
exp

(
−η
∑t−1

s=1
ˆ̀
s,ait

)
∑m

j=1 exp
(
−η
∑t−1

s=1
ˆ̀
s,ajt

)
• Then plays action At = aEtt

• Loss estimate is
ˆ̀
t,a =

1(At = a)`t,a∑m
i=1 1(a

i
t = a)Pt(i)

Analysis
• Start with the usual bound

Rn ≤
log(m)

η
+
η

2
E

[
n∑
t=1

m∑
i=1

Pt(i)ˆ̀
2
t,ait

]

• Variance term
E

[
m∑
i=1

Pt(i)ˆ̀
2
t,ait

]
≤ k .

• Regret is bounded by
Rn ≤

log(m)

η
+
ηnk

2
=
√

2nk log(m)

Application to non-stationary bandits
• Standard bandit setting
• k actions, `1, . . . , `n ∈ [0, 1]k

• Different regret
Rn = max

a1,...,an:
∑n−1
t=1 1(at 6=at+1≤c)

E

[
n∑
t=1

`t,At − `t,at

]

• Simple algorithm just runs Exp4
• Roughlym ≈ (nc)kc
• Regret is O(√cnk log(nk))

Application to non-stationary bandits
• Standard bandit setting
• k actions, `1, . . . , `n ∈ [0, 1]k

• Different regret
Rn = max

a1,...,an:
∑n−1
t=1 1(at 6=at+1≤c)

E

[
n∑
t=1

`t,At − `t,at

]

• Simple algorithm just runs Exp4
• Roughlym ≈ (nc)kc

• Regret is O(√cnk log(nk))

Application to non-stationary bandits
• Standard bandit setting
• k actions, `1, . . . , `n ∈ [0, 1]k

• Different regret
Rn = max

a1,...,an:
∑n−1
t=1 1(at 6=at+1≤c)

E

[
n∑
t=1

`t,At − `t,at

]

• Simple algorithm just runs Exp4
• Roughlym ≈ (nc)kc
• Regret is O(√cnk log(nk))

Adversarial linear bandits
• A ⊂ Rd

• Adversary chooses losses `1, . . . , `n
• maxa∈A |〈a, `t〉| ≤ 1

• Learner chooses At ∈ A

• Loss for action a is `t(a) = 〈a, `t〉
• Learner suffers `t(At)

• Regret is
Rn = max

a∈A
E

[
n∑
t=1

〈At − a, `t〉

]

Examples
• A = {e1, . . . , ed}

• Just have the usual finite-armed case
• Fundamental A = {x ∈ Rd : ‖x‖p ≤ 1}

• Practical A = finite set
• We can deal with changing action sets as well

Exp3 for linear bandits
• |A| = k

• Algorithm plays FTRL over distribution on A
• Negentropy potential

Rn . E

[
log(k)

η
+
η

2

n∑
t=1

∑
a∈A

Pt(a)ˆ̀t(a)
2

]

Estimating `t

• Last time, ˆ̀
t(a) =

1(At=a)`t(a)
Pt(a)

• Does not use the linear structure

Estimating `t
• Least squares estimation

ˆ̀
t = Q−1t At〈At, `t〉 Qt =

∑
a∈A

Pt(a)aa
>

• Expectation
E[ˆ̀t | Pt] =

∑
a∈A

Pt(a)Q
−1
t aa>`t = QtQ

−1
t `t = `t

Variance
Mt =

∑
a∈A

Pt(a)ˆ̀t(a)
2

=
∑
a∈A

Pt(a)
(
a>Q−1t At〈At, `t〉

)2
≤
∑
a∈A

Pt(a)a
>Q−1t AtA

>
t Q
−1
t a

=
∑
a∈A

Pt(a) Tr
(
Q−1t AtA

>
t Q
−1
t aa>

)
= Tr(Q−1t AtA

>
t)

Taking the conditional expectation,
E[Mt | Pt] =

∑
a∈A

Pt(a) Tr
(
Q−1t aa>

)
= d

Variance
Mt =

∑
a∈A

Pt(a)ˆ̀t(a)
2

=
∑
a∈A

Pt(a)
(
a>Q−1t At〈At, `t〉

)2

≤
∑
a∈A

Pt(a)a
>Q−1t AtA

>
t Q
−1
t a

=
∑
a∈A

Pt(a) Tr
(
Q−1t AtA

>
t Q
−1
t aa>

)
= Tr(Q−1t AtA

>
t)

Taking the conditional expectation,
E[Mt | Pt] =

∑
a∈A

Pt(a) Tr
(
Q−1t aa>

)
= d

Variance
Mt =

∑
a∈A

Pt(a)ˆ̀t(a)
2

=
∑
a∈A

Pt(a)
(
a>Q−1t At〈At, `t〉

)2
≤
∑
a∈A

Pt(a)a
>Q−1t AtA

>
t Q
−1
t a

=
∑
a∈A

Pt(a) Tr
(
Q−1t AtA

>
t Q
−1
t aa>

)
= Tr(Q−1t AtA

>
t)

Taking the conditional expectation,
E[Mt | Pt] =

∑
a∈A

Pt(a) Tr
(
Q−1t aa>

)
= d

Variance
Mt =

∑
a∈A

Pt(a)ˆ̀t(a)
2

=
∑
a∈A

Pt(a)
(
a>Q−1t At〈At, `t〉

)2
≤
∑
a∈A

Pt(a)a
>Q−1t AtA

>
t Q
−1
t a

=
∑
a∈A

Pt(a) Tr
(
Q−1t AtA

>
t Q
−1
t aa>

)

= Tr(Q−1t AtA
>
t)

Taking the conditional expectation,
E[Mt | Pt] =

∑
a∈A

Pt(a) Tr
(
Q−1t aa>

)
= d

Variance
Mt =

∑
a∈A

Pt(a)ˆ̀t(a)
2

=
∑
a∈A

Pt(a)
(
a>Q−1t At〈At, `t〉

)2
≤
∑
a∈A

Pt(a)a
>Q−1t AtA

>
t Q
−1
t a

=
∑
a∈A

Pt(a) Tr
(
Q−1t AtA

>
t Q
−1
t aa>

)
= Tr(Q−1t AtA

>
t)

Taking the conditional expectation,
E[Mt | Pt] =

∑
a∈A

Pt(a) Tr
(
Q−1t aa>

)
= d

Variance
Mt =

∑
a∈A

Pt(a)ˆ̀t(a)
2

=
∑
a∈A

Pt(a)
(
a>Q−1t At〈At, `t〉

)2
≤
∑
a∈A

Pt(a)a
>Q−1t AtA

>
t Q
−1
t a

=
∑
a∈A

Pt(a) Tr
(
Q−1t AtA

>
t Q
−1
t aa>

)
= Tr(Q−1t AtA

>
t)

Taking the conditional expectation,
E[Mt | Pt] =

∑
a∈A

Pt(a) Tr
(
Q−1t aa>

)
= d

Almost works...
• Plugging in,

Rn .
log(k)

η
+
η

2
E

[
n∑
t=1

∑
a∈A

Pt(a)ˆ̀t(a)
2

]

≤ log(k)

η
+
ηnd

2

≤
√

2nd log(k)

• It’s the bound we want, but...

• Taylor’s approximation only good when η ˆ̀t(a) ≥ −1

Almost works...
• Plugging in,

Rn .
log(k)

η
+
η

2
E

[
n∑
t=1

∑
a∈A

Pt(a)ˆ̀t(a)
2

]

≤ log(k)

η
+
ηnd

2

≤
√

2nd log(k)

• It’s the bound we want, but...
• Taylor’s approximation only good when η ˆ̀t(a) ≥ −1

Adding exploration
• FTRL recommends Pt
• Let P̃t = (1− γ)Pt + γπ

• π is an exploration distribution
• At ∼ P̃t

• Qt =
∑

a∈A P̃t(a)aa
> � γQπ = γ

∑
a∈A π(a)aa

>

ˆ̀
t(a) = |a>Q−1t At〈At, `t〉|

≤ 1

γ
〈Q−1/2π a,Q−1/2π At〉 ≤

1

γ
‖a‖Q−1

π
‖At‖Q−1

π
≤ d

γ

Adding exploration
• FTRL recommends Pt
• Let P̃t = (1− γ)Pt + γπ

• π is an exploration distribution
• At ∼ P̃t

• Qt =
∑

a∈A P̃t(a)aa
> � γQπ = γ

∑
a∈A π(a)aa

>

ˆ̀
t(a) = |a>Q−1t At〈At, `t〉|

≤ 1

γ
〈Q−1/2π a,Q−1/2π At〉 ≤

1

γ
‖a‖Q−1

π
‖At‖Q−1

π
≤ d

γ

Kiefer–Wolfowitz theorem
Assume A spans Rd

f(π) = max
a∈A

log detQπ g(π) = max
a∈A
‖a‖2Q−1

π

Theorem The following are equivalent
• π is a maximizer of f
• π is a minimiser of g
• g(π) = d

Also, a minimiser of π has support at most d(d+ 1)/2

Geometric intuition

Smallest central ellipsoid containing the A

Linear bandit analysis
• A little calculation shows that

Rn .
log(k)

η
+ nγ + ηnd with γ ≥ ηd

• Optimizing η eventually leads to
Rn ≤ 2

√
3dn log(k)

Path routing

Budapest

Frankfurt

Beijing

Abu Dhabi
Singapore

Sydney

1
10

12

11

13

12 10
8

13
7

• d edges in the graph
• A path is a set of edges
• A ⊂ {0, 1}d
• The loss is the length of the whole path
• `t(a) = 〈a, `t〉
• Assuming `t ∈ [0, 1]d

• Bandit feedback Observe 〈At, `t〉

• Semibandit feedback Observe At,i`t,i

• d edges in the graph
• A path is a set of edges
• A ⊂ {0, 1}d
• The loss is the length of the whole path
• `t(a) = 〈a, `t〉
• Assuming `t ∈ [0, 1]d

• Bandit feedback Observe 〈At, `t〉

• Semibandit feedback Observe At,i`t,i

A simple ranking problem
• Learner choosesm out of d products torecommend
• `t,i = 0 if the user would click on product i ∈ [d]

• `t,i = 1 otherwise
• A = {x ∈ {0, 1}d : ‖x‖1 = m}

• Learner observes At,i`t,i

Combinatorial semi-bandits
• A ⊂ {x ∈ {0, 1}d : ‖x‖1 ≤ m}

• Adversary chooses losses `t ∈ [0, 1]d

• Loss suffered by learner is 〈`t, At〉

• Bandit feedback Observe 〈At, `t〉

• Semibandit feedback Observe At,i`t,i

• Regret as usual
Rn ≤ max

a∈A
E

[
n∑
t=1

〈At − a, `t〉

]

FTRL for combinatorial semibandits
• Play FTRL with negentropy on conv(A)

• Learner chooses point in Xt ∈ conv(A)

• Find distribution Pt with∑a∈A Pt(a)a = Xt

• Estimate losses by
ˆ̀
t,i =

At,i`t,i
Xt,i

FTRL for combinatorial semibandits
• Our standard regret bound

Rn ≤ max
a∈A

F (a)− F (X1)

η
+
η

2
E

[
n∑
t=1

d∑
i=1

Xt,i
ˆ̀2
t,i

]

≤ m(1 + log(d/m))

η
+
ηnd

2

≤
√

2nmd(1 + log(d/m)

Drawbacks of FTRL for semibandits
• Computation seems challenging
• There are two optimization problems to solve
• Finding the recommendation of FTRL

Xt = argminx∈conv(A) η
t−1∑
s=1

〈x, ˆ̀s〉+ F (x)

• Finding Pt such that∑a∈A Pt(a)a = Xt

• The first is convex, the second is linear
• But A is very large!

Drawbacks of FTRL for semibandits
• Computation seems challenging
• There are two optimization problems to solve
• Finding the recommendation of FTRL

Xt = argminx∈conv(A) η
t−1∑
s=1

〈x, ˆ̀s〉+ F (x)

• Finding Pt such that∑a∈A Pt(a)a = Xt

• The first is convex, the second is linear
• But A is very large!

Drawbacks of FTRL for semibandits
• A reminder about the regret

Rn = max
a∈A

E

[
n∑
t=1

〈At − a, `t〉

]

• An algorithm with sublinear regret canapproximate
min
a∈A

n∑
t=1

〈a, `t〉

• Can we derive an efficient algorithm that solvesoptimization problems of this kind?

Follow the perturbed leader
• Follow the perturbed leader

• Regularize with randomization

• Sample Zt ∈ Rd from carefully chosen distribution
At = argmina∈A

t−1∑
s=1

〈a, ˆ̀s〉+ 〈a, Zt〉

• You can prove Rn = O(m
√
nd(1 + log(d)))

• Proof is technical, but very nice
• Main idea Write algorithm as FTRL in expectation

Follow the perturbed leader
• Follow the perturbed leader

• Regularize with randomization

• Sample Zt ∈ Rd from carefully chosen distribution
At = argmina∈A

t−1∑
s=1

〈a, ˆ̀s〉+ 〈a, Zt〉

• You can prove Rn = O(m
√
nd(1 + log(d)))

• Proof is technical, but very nice
• Main idea Write algorithm as FTRL in expectation

Follow the perturbed leader
• Follow the perturbed leader

• Regularize with randomization

• Sample Zt ∈ Rd from carefully chosen distribution
At = argmina∈A

t−1∑
s=1

〈a, ˆ̀s〉+ 〈a, Zt〉

• You can prove Rn = O(m
√
nd(1 + log(d)))

• Proof is technical, but very nice
• Main idea Write algorithm as FTRL in expectation

Follow the perturbed leader
• Follow the perturbed leader

• Regularize with randomization

• Sample Zt ∈ Rd from carefully chosen distribution
At = argmina∈A

t−1∑
s=1

〈a, ˆ̀s〉+ 〈a, Zt〉

• You can prove Rn = O(m
√
nd(1 + log(d)))

• Proof is technical, but very nice
• Main idea Write algorithm as FTRL in expectation

What else is there?
• A lot!
• How to handle non-stationary environments?
• Delays?
• Other structure (convex bandits, infinite actionsets, bandits on graphs, kernelizing linearbandits,...)
• Other settings (pure exploration)
• Partial monitoring
• Bayesian methods

