Bandit Algorithms
(part 3)

Tor Lattimore

Menu for the day

- Bandits with experts

- Adversarial linear bandits
- Shortest path problems

- Ranking

- Semibandits

Bandits with experts

- k actions

- Adversary chooses losses /1, ..., ¢, € [0,1]*
- m experts making recommendations

- Expert s recommends action a! in round ¢

- Learner chooses an action A; € {1,...,k}

- Regret is

R, = max [E
ie{l,...,m}

n
: :Et)At - gt,a%
t=1

Exp4

- FTRL with negentropy over the experts
- Algorithm samples expert E; from distribution P,
exp (_77 Zi;ll és ai)

= Sy (<m0,)

+ Then plays action A; = a’*
- Loss estimate is
]1(1475 = a)ﬁm
> e Wag = a) By(3)

gt,a -

Analysis
- Start with the usual bound

log

R, < ”E

>3 o,

t=1 i=1

- Variance term

=3 n0i, | <

- Regret is bounded by

1 k
n

Application to non-stationary bandits
- Standard bandit setting
- k actions, ¢y, ...,4, € [0,1]*

- Different regret

> la, - et,at]
t=1

R, = max E
)

Application to non-stationary bandits
- Standard bandit setting
- k actions, ¢y, ...,4, € [0,1]*
- Different regret

R, = max E
)

—1
atys@ny s,y La#ar<c

> lia, - et,at]
t=1

- Simple algorithm just runs Exp4
- Roughly m ~ () k°

Application to non-stationary bandits
- Standard bandit setting
- k actions, ¢y, ...,4, € [0,1]*
- Different regret

R, = max E
)

—1
atys@ny s,y La#ar<c

> lia, - ét,at]
t=1

- Simple algorithm just runs Exp4
- Roughly m ~ () k°
- Regretis O(y/cnklog(nk))

Adversarial linear bandits
- A CR?

- Adversary chooses losses ¢4, ..., /4,
* maxgeq |{a, &) <1

- Learner chooses A; € A

- Loss for action a is ¢;(a) = (a, ;)

- Learner suffers ¢,(A;)

- Regret is

Examples

- A={ey,...,eq}

- Just have the usual finite-armed case
+ Fundamental A= {z ¢ R?: ||z|, <1}
- Practical A = finite set

- We can deal with changing action sets as well

Exp3 for linear bandits

Al =k
- Algorithm plays FTRL over distribution on A
- Negentropy potential

R, SE log ”ZZPt

t=1 acA

Estimating ¢

- Lasttime, #(a) = ngj—w

- Does not use the linear structure

Estimating ¢,

- Least squares estimation

0 = QA A) Qi = Z Py(a)aa’

acA

- Expectation

ft | Pt ZPt Qt aa gt Q:Qy 1@—«@

acA

Variance

My =) P(a)li(a)’

acA

Variance

Variance

Variance

Variance

Y R T (Q AT Q) o)

= Tr(Q; " AA])

Variance

=" Pyo) T (@) AAT @ taa)
acA
= Tr(Q; 'AA[)

Taking the conditional expectation,

E[M; | P] = ZH TI’ Qt aa):d
acA

Almost works...
- Plugging in,

log

R, "E

t=1 acA

- log(k) N nnd

== 5
2ndlog(k)

- It's the bound we want, but...

>3 Ride

!

Almost works...
- Plugging in,

log

R, "E

>3 ri]

t=1 acA

- log(k) N nnd

== 5
2ndlog(k)

- It's the bound we want, but...

- Taylor's approximation only good when nét(a) > —1

Adding exploration
- FTRL recommends P;

- Let P, = (1 —~)P, +r

- m is an exploration distribution

- Ay~]5t

Adding exploration
- FTRL recommends P;
- Let P, = (1 —~)P, +r
- m is an exploration distribution
- Ay~ pt
C Qi =Y e Pila)aa” = 4Qr =7y m(a)aa’

U(a) = a" Q; A A, 0)]

1 1 d
< QZY%a, Q24 < = lallpor | A oo < —
7< t) ,yll o=t [[Al - 5

Kiefer—Wolfowitz theorem

Assume A spans R?

— maxlog det Q, = o1
f(m) = maxlogdet ¢ g(m) = max||al|g;

Theorem The following are equivalent
- 7 is a maximizer of f
- 7 is a minimiser of ¢

g(m) =d

Also, a minimiser of 7 has support at most d(d + 1)/2

Geometric intuition

Y

Smallest central ellipsoid containing the A

Linear bandit analysis

- A little calculation shows that

1 :
R, S o8 (k) + ny + nnd with v > nd
n

- Optimizing n eventually leads to

R, < 24/3dnlog(k)

Path routing

Beijing

7
13
1 Abu Dhabi
Frankfurt
T’ Singapore 10 &
8

Sydney

- d edges in the graph

- A path is a set of edges

- Ac{0,1}¢

- The loss is the length of the whole path
- li(a) = {a, ;)

- Assuming ¢; € [0,1]¢

- d edges in the graph

- A path is a set of edges

- Ac{0,1}¢

- The loss is the length of the whole path
- li(a) = {a, ;)

- Assuming ¢; € [0,1]¢

- Bandit feedback Observe (A;,¢;)

- Semibandit feedback Observe A, ;/;;

A simple ranking problem

- Learner chooses m out of d products to
recommend

- {;; = 0if the user would click on product i € [d]
* {;; = 1 otherwise
cA={z {0, 1} [lz]; = m}

- Learner observes A ;{;;

Combinatorial semi-bandits
cAC{ze{0,1}: x|, <m}

- Adversary chooses losses ¢; € [0, 1]¢
- Loss suffered by learner is (¢;, A;)

- Bandit feedback Observe (A;,/¢;)

- Semibandit feedback Observe A, ;/;;

- Regret as usual

R, < maxE
acA

D (A —a, m]

t=1

FTRL for combinatorial semibandits

- Play FTRL with negentropy on conv(.A)
- Learner chooses point in X; € conv(.A)
- Find distribution P, with >~ _, Pi(a)a = X;

- Estimate losses by

FTRL for combinatorial semibandits

- Our standard regret bound

R, < max Fla) = (X)) + g
acA n 2
- m(1 + log(d/m)) N nnd
< 0 5
< v/2nmd(1 + log(d/m)

n d
=1

thé?z]

t=1 1

Drawbacks of FTRL for semibandits

- Computation seems challenging
- There are two optimization problems to solve
- Finding the recommendation of FTRL

t—1
Xy = argminxewnv(/l) n Z<x7 ls) + F(z)

s=1

- Finding P, suchthat)" _, Pi(a)a = X;

Drawbacks of FTRL for semibandits

- Computation seems challenging
- There are two optimization problems to solve
- Finding the recommendation of FTRL

t—1
Xy = argminxewnv(/l) n Z<x7 ls) + F(z)
s=1
- Finding P, suchthat)" _, Pi(a)a = X;
- The first is convex, the second is linear

- But A is very large!

Drawbacks of FTRL for semibandits
- Areminder about the regret

> (A —a, m]

t=1

R, = max E
acA

- An algorithm with sublinear regret can
approximate

n

i 4
i 2

- Can we derive an efficient algorithm that solves
optimization problems of this kind?

Follow the perturbed leader
- Follow the perturbed leader

- Regularize with randomization

Follow the perturbed leader
- Follow the perturbed leader

- Regularize with randomization

- Sample Z, € R? from carefully chosen distribution

t—1

Ay = argmin, 4 Z(a,l@) + (a, Zy)

s=1

Follow the perturbed leader
- Follow the perturbed leader

- Regularize with randomization

- Sample Z, € R? from carefully chosen distribution

t—1

Ay = argmin, 4 Z(a,l@) + (a, Zy)

s=1

+ You can prove %, = O(m~/nd(1 + log(d)))

Follow the perturbed leader
- Follow the perturbed leader

- Regularize with randomization

- Sample Z, € R? from carefully chosen distribution

t—1

Ay = argmin, 4 Z(a,l@) + (a, Zy)

s=1

+ You can prove %, = O(m~/nd(1 + log(d)))
- Proof is technical, but very nice

- Main idea Write algorithm as FTRL in expectation

What else is there?
- Alot!

- How to handle non-stationary environments?
- Delays?

- Other structure (convex bandits, infinite action
sets, bandits on graphs, kernelizing linear
bandits,...)

- Other settings (pure exploration)
- Partial monitoring

- Bayesian methods

