
Bandits and Monte-Carlo Tree Search

Tor Lattimore

DeepMind, London (Sheffield)



Attendance code

Slides:
http://tor-lattimore.com/downloads/talks/2023/Sheffield.pdf

Please ask questions anytime

http://tor-lattimore.com/downloads/talks/2023/Sheffield.pdf


Program

• Two player full information games

• Monte-Carlo Tree Search (MCTS)

• Bandit problems

• Learning via self-play

• Lab tomorrow MCTS search implementation on Connect4

Huge thanks to Finnian Lattimore for the code



A mini history of computer game-playing

1950’s Turing, Shannon and others develop first chess programs

1997 DeepBlue defeats Gary Kasparov using search and
enormous (by the standards of the day) computation power

2003 I authored a chess engine that came 9th (of 12) in the
Australian Computer Chess Championships

2016 AlphaGo defeats to Lee Sedol in Go using a highly selective
search powered by machine learning (I joined DM in 2017)



Two player full information deterministic zero-sum games

• Two players take turns taking actions

• At some point one of the players wins, the other loses (or they draw)

• The game is deterministic (no dice)

• No hidden knowledge



Examples



Non-examples



Formalising games

A two-player deterministic zero-sum full information game is defined by a
tuple (S,A, T , Terminal,V, sinit)

• A set of states S
- all possible board positions

• A collection of action sets: {As : s ∈ S}
- As is the set of actions available in state s

• A transition function T : S×A→ S

• A set of terminal states Terminal ⊂ S
- The game ends at terminal states

• An initial state sinit ∈ S

• An evaluation function V : Terminal→ [−1, 1]



Game trees

• An alternative way of representing a game

• Nodes correspond to states

• Root node is the initial state

• Children of a given node/state correspond to states reachable from
that node

x o
x o o

x

x o o
x o o

x x o o
x o o
x x

-1

x o o
x o o

x x

x o o
x o o
o x x

0

x o
x o o
o x x o x

x o o
o x

x o x
x o o
o x o

0

x o
x o o
o x x

x o o
x o o
o x x

0

x o
x o o

x o

x o x
x o o

x o

x o x
x o o
o x o

0

x o
x o o
x x o

-1

o x o x



What is the best move?

A value of −1 is a win for ‘X’ and a 0 is a draw

x o
x o o

x

x o o
x o o

x x o o
x o o
x x

-1

x o o
x o o

x x

x o o
x o o
o x x

0

x o
x o o
o x x o x

x o o
o x

x o x
x o o
o x o

0

x o
x o o
o x x

x o o
x o o
o x x

0

x o
x o o

x o

x o x
x o o

x o

x o x
x o o
o x o

0

x o
x o o
x x o

-1

o x o x



Minimax search

• A method for finding the best move

• Naive implementation works backwards from the leaves of the
game tree

x o
x o o

x

0

x o o
x o o

x

-1

x o o
x o o
x x

-1

x o o
x o o

x x

0

x o o
x o o
o x x

0

x o
x o o
o x

0

x o x
x o o
o x

0

x o x
x o o
o x o

0

x o
x o o
o x x

0

x o o
x o o
o x x

0

x o
x o o

x o

-1

x o x
x o o

x o

0

x o x
x o o
o x o

0

x o
x o o
x x o

-1

o x o x



Minimax search

• A method for finding the best move

• Naive implementation works backwards from the leaves of the
game tree

x o
x o o

x

0

x o o
x o o

x

-1

x o o
x o o
x x

-1

x o o
x o o

x x

0 x o o
x o o
o x x

0

x o
x o o
o x

0

x o x
x o o
o x

0

x o x
x o o
o x o

0

x o
x o o
o x x

0

x o o
x o o
o x x

0

x o
x o o

x o

-1

x o x
x o o

x o

0

x o x
x o o
o x o

0

x o
x o o
x x o

-1

o x o x



Minimax search

• A method for finding the best move

• Naive implementation works backwards from the leaves of the
game tree

x o
x o o

x

0

x o o
x o o

x

-1

x o o
x o o
x x

-1

x o o
x o o

x x

0 x o o
x o o
o x x

0

x o
x o o
o x

0

x o x
x o o
o x 0

x o x
x o o
o x o

0

x o
x o o
o x x

0 x o o
x o o
o x x

0

x o
x o o

x o

-1

x o x
x o o

x o 0
x o x
x o o
o x o

0

x o
x o o
x x o

-1

o x o x



Minimax search

• A method for finding the best move

• Naive implementation works backwards from the leaves of the
game tree

x o
x o o

x

0

x o o
x o o

x

-1

x o o
x o o
x x

-1

x o o
x o o

x x

0 x o o
x o o
o x x

0

x o
x o o
o x

0

x o x
x o o
o x 0

x o x
x o o
o x o

0

x o
x o o
o x x

0 x o o
x o o
o x x

0

x o
x o o

x o

-1

x o x
x o o

x o 0
x o x
x o o
o x o

0

x o
x o o
x x o

-1

o x o x



Minimax search

• A method for finding the best move

• Naive implementation works backwards from the leaves of the
game tree

x o
x o o

x

0

x o o
x o o

x

-1

x o o
x o o
x x

-1

x o o
x o o

x x

0 x o o
x o o
o x x

0

x o
x o o
o x

0

x o x
x o o
o x 0

x o x
x o o
o x o

0

x o
x o o
o x x

0 x o o
x o o
o x x

0

x o
x o o

x o

-1 x o x
x o o

x o 0
x o x
x o o
o x o

0

x o
x o o
x x o

-1

o x o x



Minimax search

• A method for finding the best move

• Naive implementation works backwards from the leaves of the
game tree

x o
x o o

x

0

x o o
x o o

x

-1

x o o
x o o
x x

-1

x o o
x o o

x x

0 x o o
x o o
o x x

0

x o
x o o
o x

0

x o x
x o o
o x 0

x o x
x o o
o x o

0

x o
x o o
o x x

0 x o o
x o o
o x x

0

x o
x o o

x o

-1 x o x
x o o

x o 0
x o x
x o o
o x o

0

x o
x o o
x x o

-1

o x o x



Limitations of minimax search

• Minimax search is only practical for miniscule games

• Theoretically needs to search all states

- TicTacToe 765

- Connect4 4, 531, 985, 219, 092

- Chess 10123

- Go 10170



Alpha-beta search

• A huge improvement on minimax

• Used by most chess engines until quite recently (e.g., DeepBlue or
Stockfish)

• Not as flexible as MCTS

• Basic idea Prune nodes early that you know are suboptimal



MCTS search

MCTS takes as input a state and returns a move

• Deep searches, selective coverage

• No need for evaluation function

• Stop anytime



MCTS initialisation

MCTS runs for as many iterations as possible before a
time limit

Builds a tree that grows by a single node in each
iteration

Tree is initialised with a single node

f u nc t i on search(board):

wh i l e time_left ():

do_iteration ()

r e t u r n select_move ()



MCTS iteration

• Traverse the tree to a leaf using a selection algorithm

• Expand all possible moves at the leaf (tree gets bigger)

• Estimate the value of the leaf using a rollout

• Propagate the outcome back through the tree



MCTS iteration

INITIAL SELECTION EXPANSION ROLLOUT



Selection

• Selection algorithm operates at the node level

• Needs to choose which child to explore

• Should explore bad children just enough to know they are bad

v = 30, w = 18

v = 5, w = 1

v = 10, w = 5

c lass Node

parent # parent of this node

children # children of this node

board # board state

visits # number of visits

wins # number of wins



Selection

OPTION 1 Select argmaxk
wk
vk

+ c
√

log ‖v‖1
vk

OPTION 2 Select argmaxk
wk
vk

+
c
√
‖v‖1
vk

Same principle for both

select arms that either led to good outcomes in the
past or have not been selected much

The constant c is tuned empirically. What do
smaller/larger values mean?



Rollout

• After expanding a new node, MCTS performs a rollout until the end
of the game

• Actions during the rollout are chosen using a computationally cheap
algorithm

• Option 1 Random actions! Naive, but often effective

• Option 2 Train a neural network and use it to propose actions



Propagation

• The rollout gives a result

• Backpropagate the result to the root of the tree and
all the nodes in-between



Example

v=0, w=0

v=1, w=1

v=1, w=0

v=1, w=1

v=1, w=0

v=2, w=1

v=3, w=2



Example

v=0, w=0

v=1, w=1

v=1, w=0

v=1, w=1

v=1, w=0

v=2, w=1

v=3, w=2



Example

v=0, w=0

v=1, w=1

v=1, w=0

v=1, w=1

v=1, w=0

v=2, w=1

v=3, w=2
v=0, w=0

v=0, w=0



Example

v=0, w=0

v=1, w=1

v=1, w=0

v=1, w=1

v=1, w=0

v=2, w=1

v=3, w=2
v=0, w=0

v=0, w=0



Example

v=0, w=0

v=1, w=1

v=1, w=0

v=1, w=1

v=1, w=0

v=2, w=1

v=3, w=2
v=0, w=0

v=0, w=0

black wins



Example

v=0, w=0

v=1, w=1

v=1, w=0

v=1, w=1

v=1, w=0

v=2, w=1

v=3, w=2
v=0, w=0

v=0, w=0

v=1, w=0

v=2, w=2

v=3, w=1

v=4, w=3

black wins



Using MCTS

• Now we have all the ingredients

• Each iteration the algorithm expands a node, performs a rollout and
backpropegates the result

• Run as many iterations as you have time

• Play the action at the root given by

a = argmax
k

vk

• Alternative sample your action randomly in proportion to v or play
the action with the largest average return



f unc t i on search(board):

root = Node(board)

whi le time_left ():

do_iteration(root)

r e t u r n select_move(root)

f unc t i on do_iteration(node):

whi le not node.is_leaf ():

node = node.select_best_child ()

node.expand ()

node = node.select_best_child ()

value = rollout(board)

whi le not node.is_root ():

node.visits += 1

node.wins += value



Gotchas and tips

Store/use the win counts with the correct sign!

v = 30, w = 18

v = 5, w = 1

v = 10, w = 5

c lass Node

parent # parent of this node

children # children of this node

board # board state

visits # number of visits

wins # number of wins

Select child node that maximises

argmax
k

vk
wk

+ c

√
log(

∑
j vj)

vk

Win counts are with respect to the white player, even though we are
storing the counts in nodes associated with the black player!



Gotchas and tips

You can’t expand the tree beyond the end of the game!
If you get to a node that is a terminal node, you can just propagate the
result back directly. No rollout required.

v=0, w=0

v=1, w=1

v=1, w=0

v=1, w=1

v=1, w=0

v=2, w=1

v=3, w=2



Flexiblity

Core algorithm can be configured by changing the
components

• Replace the selection function

• Modify the way rollouts are performed

• Mix rollouts with evaluation

• Change how the move at the root is selected

All components can make use of modern ML
techniques



Extensions and theory

First, any questions about the algorithm

?



Learning a rollout policy

• A rollout policy is a function fθ : states→ distributions over actions

• The parameter θ determines the policy

• Usually fθ is a neural network

• Need to choose input representation (how to represent the state?)

• Need to choose a neural network architecture



Learning a rollout policy

• What data do we use to learn the weights?

• Option 1 Use human expert data, D = {statek, actionk}nk=1

• What if there is no human data? What if no humans are experts?

• Option 2 Generate your own data with self play



Self play

• Start with an untrained network

• Use MCTS playing against itself to generate n games

• Use the moves played by MCTS to train the network

• Repeat for many many iterations



Bandit problems

• The algorithm used to select nodes is called a bandit algorithm

• A framework for modelling decision-making in the face of
uncertainty



Applications

A/B testing A company wants to test whether version A or B of a
website generates more sales. Users arrive sequentially and
are allocated a website using a bandit algorithm

Drug evaluation A pharmecutical company wants to evaluate whether or
not a new drug is effective relative to a placebo. Patients
arrive sequentially and are allocated either the placebo or
the treatment

Traffic routing A driver wants to get from point A to B, but which route
should they take?

Advertising placement Company X wants to decide which add to show
user Y

Simplified reinforcement learning Bandits have been useful to study RL
in a simplified setting



Formal setup and optimistic algorithm

• A k-armed bandit is defined by unknown probability distributions
P1, . . . ,Pk

• The learner interacts with the bandit for n rounds

• In round t the learner chooses an action in {1, 2, . . . , k}

• Observe a reward Xt sampled from distribution PAt

Upper Confidence Bound Algorithm
1. Play each action once
2. Subsequently in round t play action

At = argmax
a∈{1,...,k}

µ̂k(t− 1) +

√
2 log(t)

Tk(t− 1)

µ̂k(t− 1) is the average reward received playing action k

Tk(t− 1) is the number of times you played action k



Pre-work for lab

• Make sure you have Python3 and numpy

• Familiarise yourself with coordinate-wise operations on numpy
arrays. E.g., square roots, argmax

• Look up the rules of Connect4



Questions to think about

• The minimax algorithm needs to visit all states of the game tree, but
do you need to store the whole game tree? Try to come up with a
depth-first implementation that uses memory that is linear in the
depth

• We used a bandit algorithm when deciding which actions to expand
towards the leaves. What would happened if you chose leaves at
random. Would the algorithm work? Total failure? Or just learn more
slowly?

• Bandit algorithms mostly assume that the reward of an action today
is the same tomorrow (iid rewards for a fixed action). Does the
application in MCTS satisfy this assumption?

• Why is it important that the game is zero sum? What about more
than two players? Think about the richer effects that appear in these
more general games. Can you think of real life (beyond games)
examples?



Further resources

• Original MCTS paper: Kocsis & Szepesvári, “Bandit based
Monte-Carlo Planning”

• AlphaZero paper: Silver et al.. “Mastering Chess and Shogi by
Self-Play with a General Reinforcement Learning Algorithm”

• Bandit algorithms: http://banditalgs.com

http://banditalgs.com

